Стр.
Скачать статью

Новый метод рок-типизации диагенетически преобразованных карбонатных пород

Е. Швалюк, А. Чистяков, Н. Ба, А. Мухаметдинова, А. Рябухин, М. Спасенных

Оригинальная статья

DOI https://doi.org/10.18599/grs.2023.4.15

203-218
rus.
eng.

open access

Under a Creative Commons license

В статье проводится сопоставление эффективности применения существующих методов рок-типизации карбонатных пород и предлагается альтернативный классификатор. Для рок-типизации карбонатного коллектора, подвергшегося интенсивному диагенезу, были использованы четыре известных индекса. Однако выделенные с их помощью рок-типы характеризовались низкими коэффициентами корреляции между ключевыми параметрами, использующимися для построения геологической модели и подсчета запасов. Авторами предложен новый индекс KØS, который рассчитывается как функция коэффициентов проницаемости (k), пористости (φ), и остаточной водонасыщенности (Swir). Влияние процессов осадконакопления и диагенеза на параметры нового индекса изучалось методами рентгеновской микротомографии (X-ray microCT) и ядерного-магнитного резонанса (NMR). Сравнительный анализ предложенного индекса KØS с существующими показал, что у рок-типов, выделенных с его помощью, уравнения регрессии имеют наиболее высокие коэффициенты корреляции между подсчетными параметрами. Более того, каждый выделенный рок-тип обладает отличительной микроструктурой, что подтверждает правомерность предложенного подхода для классификации горных пород. Так как все компоненты индекса KØS используются при подсчете запасов, и их определение входит в стандартные программы исследования керна, предлагаемый индекс может применяться практически на всех месторождениях углеводородов.

 

карбонатные породы, диагенез, рок-типизация, ЯМР, рентгеновская микротомография, характеристика пород-коллекторов, доломитизация, выщелачивание

 

  • Al-Farisi O., Elhami M., Al-Felasi A., Yammahi F., Ghedan S. (2009). Revelation of carbonate rock typing – The resolved gap. SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, UAE, October 2009. https://doi.org/10.2118/125576-MS
  • Amaefule J. O., Altunbay M., Tiab D., Kersey D.G., Keelan D.K. (1993). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. SPE Annual Technical Conference and Exhibition, Houston, Texas, October 1993. https://doi.org/10.2118/26436-MS
  • BinAbadat E., Bu-Hindi H. et al. (2019). Complex carbonate rock typing and saturation modeling with highly-coupled geological description and petrophysical properties. SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, September 2019. https://doi.org/10.2118/196677-MS
  • Buiting J.J.M., Clerke E.A. (2013). Permeability from porosimetry measurements: Derivation for a tortuous and fractal tubular bundle. Journal of Petroleum Science and Engineering 108, pp. 267–278. https://doi.org/10.1016/j.petrol.2013.04.016
  • Chiu T.H., Li J.B. et al. (2018). Estimation of local permeability/porosity ratio in resin transfer molding. Journal of the Taiwan Institute of Chemical Engineers, 91, pp. 32–37. https://doi.org/10.1016/j.jtice.2018.05.040
  • Choquette P.W., Pray. L.C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54, pp. 207–244. https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D
  • Coates G.R., Xiao L., Prammer M.G. (1999). NMR Logging Principles and Applications. Halliburton Energy Services, Houston: Gulf Publishing Company.
  • Da Silva P.N., Gonçalves E.C. et al. (2015). Automatic classification of carbonate rocks permeability from 1H NMR relaxation data. Expert Systems with Applications, 42, pp. 4299–4309. https://doi.org/10.1016/j.eswa.2015.01.034
  • Dakhelpour-Ghoveifel J., Shegeftfard M., Dejam M. (2019). Capillary-based method for rock typing in transition zone of carbonate reservoirs. Journal of Petroleum Exploration and Production Technology, 9, pp. 2009–2018. https://doi.org/10.1007/s13202-018-0593-6
  • Dernaika M., Mansoori M.Al. et al. (2018). Digital and conventional techniques to study permeability heterogeneity in complex carbonate rocks. Petrophysics, 59(03), pp. 373–396. https://doi.org/10.30632/PJV59N3-2018a6
  • Dernaika M., Masalmeh S., Mansour, B., Al Jallad O., Koronfol S. (2019). Geology-Based Porosity-Permeability Correlations in Carbonate Rock Types. SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, September 2019. https://doi.org/10.2118/196665-MS
  • Dunham R. (1962). Classification of Carbonate Rocks According to Depositional Textures. Classification of Carbonate Rocks, Ham, W.E. (Ed.), AAPG, pp. 108–121.
  • Fitzsimons D., Oeltzschner G., Ovens C., Radies D., Schulze F. (2016). Integration and Data Analysis of Conventional Core Data with NMR and CT Data to Characterize An Evaporitic Carbonate Reservoir. Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2016. https://doi.org/10.2118/183145-MS
  • Fleury M., Santerre Y., Vincent B. (2007). Carbonate rock typing from NMR relaxation measurements. SPWLA 48th Annual Logging Symposium, Austin, Texas, June 2007.
  • Gholami V., Mohaghegh S.D. (2009). Intelligent upscaling of static and dynamic reservoir properties. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 2009. https://doi.org/10.2118/124477-MS
  • Giao P.H., Chung N.H. (2017). A case study on integrated petrophysical characterization of a carbonate reservoir pore system in the offshore red river basin of Vietnam. Petrophysics, 58(03), pp. 289–301.
  • Haikel S., Rosid M.S., Haidar M.W. (2018). Study comparative rock typing methods to classify rock type carbonate reservoir Field “s” East Java. Journal of Physics: Conference Series. doi: 10.1088/1742-6596/1120/1/012047
  • Hidajat I., Mohanty K.K., Flaum M., Hirasaki G.J. (2004). Study of vuggy carbonates using NMR and X-ray CT scanning. SPE Reservoir Evaluation and Engineering, 7(05), pp. 365–377. https://doi.org/10.2118/88995-PA
  • Huang S., Zhang Y. et al. (2017). Types and characteristics of carbonate reservoirs and their implication on hydrocarbon exploration: A case study from the eastern Tarim Basin, NW China. Journal of Natural Gas Geoscience 2(1), pp. 73–79. https://doi.org/10.1016/j.jnggs.2017.02.001
  • Izadi M., Ghalambor A. (2013). A new approach in permeability and hydraulic-flow-unit determination. SPE Reservoir Evaluation and Engineering, 16(03), pp. 257–264. https://doi.org/10.2118/151576-PA
  • Kolodzie S. (1980). Analysis of pore throat size and use of the waxman-smits equation to determine OOIP in spindle field, Colorado. SPE Annual Technical Conference and Exhibition, Dallas, Texas, September 1980. https://doi.org/10.2118/9382-MS
  • Lima M.C., Pontedeiro E.M., Raoof A.O. (2020). Petrophysical Correlations for the Permeability of Coquinas (Carbonate Rocks). Transport in Porous Media, 135, pp. 287–308. https://doi.org/10.1007/s11242-020-01474-1
  • Loucks R.G., Reed R.M., Ruppel S.C., Hammes U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), pp. 1071–1098. https://doi.org/10.1306/08171111061
  • Lu Y., Liu K., Wang Y. (2021). Applying NMR T2 spectral parameters in pore structure evaluation—an example from an eocene low permeability sandstone reservoir. Applied Sciences (Switzerland), 11(17). https://doi.org/10.3390/app11178027
  • Lucia F.J. (1995). Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. American Association of Petroleum Geologists Bulletin, 79(9), pp. 1275–1300. https://doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D
  • Lucia F.J. (2007). Carbonate Reservoir Characterization. Springer Berlin, Heidelberg, 2nd edition. XII, p. 336. https://doi.org/10.1007/978-3-540-72742-2
  • Markovic S et al. (2022). Application of XGBoost model for in-situ water saturation determination in Canadian oil-sands by LF-NMR and density data. Scientific Reports, 12. doi: 10.1038/s41598-022-17886-6
  • Mirzaei-Paiaman, A., Ostadhassan, M., Chen, Z. (2018). A new approach in petrophysical rock typing. Journal of Petroleum Science and Engineering, 166, pp. 445–464. https://doi:10.1016/j.petrol.2018.03.075
  • Moore C.H. (2001). Carbonate Reservoirs, Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Development in Sedimentology. Amsterdam: Elsevier, vol. 55, 444 p. https://doi.org/10.1016/S0146-6380(01)00104-8
  • Müller-Huber E., Schön J., Börner F. (2016). Pore space characterization in carbonate rocks - Approach to combine nuclear magnetic resonance and elastic wave velocity measurements. Journal of Applied Geophysics, 127, pp. 68–81. https://doi.org/10.1016/j.jappgeo.2016.02.011
  • Pires L.O., Winter A., Trevisan O.V. (2019). Dolomite cores evaluated by NMR. Journal of Petroleum Science and Engineering, 176, pp. 1187–1197. https://doi.org/10.1016/j.petrol.2018.06.026
  • Pittman E.D. (1992). Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. American Association of Petroleum Geologists Bulletin, 76(2), pp. 191–198. https://doi.org/10.1306/BDFF87A4-1718-11D7-8645000102C1865D
  • Rebelle M., Lalanne B. (2014). Rock-typing In Carbonates: A Critical Review Of Clustering Methods. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November 2014. https://doi.org/10.2118/171759-MS
  • Shvalyuk E., Tchistiakov A., Kalugin A. (2022). The Application of Computed Tomography Scanning and Nuclear Magnetic Resonance for Rock Typing of Polymineral Clastic Reservoirs. SPE Reservoir Evaluation and Engineering, 25, pp. 232–244. https://doi.org/10.2118/208603-PA
  • Shvalyuk E., Tchistiakov A., Spasennykh M. (2022). Integration of Computed Tomography Scanning and Nuclear Magnetic Resonance Results with Conventional Laboratory Test Data for Effective Reservoir Characterization. ADIPEC, Abu Dhabi, UAE, October 2022. https://doi.org/10.2118/211638-MS
  • Skalinski M., et al. (2010). Updated Rock Type Definition and Pore Type Classification of a Carbonate Buildup, Tengiz Field, Republic of Kazakhstan (Russian), in: SPE Caspian Carbonates Technology Conference. SPE Caspian Carbonates Technology Conference, Atyrau, Kazakhstan. https://doi.org/10.2118/139986-RU
  • Skalinski M., Kenter J.A.M. (2015). Carbonate petrophysical rock typing: integrating geological attributes and petrophysical properties while linking with dynamic behaviour. Geological Society, London, Special Publications, 406, pp. 229–259. https://doi.org/10.1144/SP406.6
  • Skalinski M., Kenter, J. (2013). Carbonate Petrophysical Rock Typing – Integrating Geological Attributes and Petrophysical Properties While Linking With Dynamic Behavior. SPWLA 54th Annual Logging Symposium, SPWLA-2013-A.
  • Sokolov V.N., Osipov V.I., Rumyantseva N.A. (2013). Regularities of structure formation in clay sediments. Global View of Engineering Geology and the Environment: Proc. International Symposium and 9th Asian Regional Conference of IAEG, pp. 739–742.
  • Sun H., Belhaj H., Bera A. (2019). Improved characterization of transition zones in carbonate reservoir by modern digital imaging technique. Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2018. https://doi.org/10.2118/192722-MS
  • Tiab D., Donaldson E.C. (2016). Petrophysics (Fourth Edition). Elsevier Inc. https://doi.org/10.1016/C2014-0-03707-0
  • Wang M. et al. (2020). Determination of NMR T2 Cutoff and CT Scanning for Pore Structure Evaluation in Mixed Siliciclastic–Carbonate Rocks before and after Acidification. Energies, 13(6), 1338. https://doi.org/10.3390/en13061338
  • Westphal H., Surholt I., Kruspe T. et al. (2005). NMR measurements in carbonate rocks: Problems and an approach to a solution. Pure and Applied Geophysics, 162, pp. 549–570. https://doi.org/10.1007/s00024-004-2621-3
  • Wu Y., Tahmasebi P., Ren L. (2019). A comprehensive study on geometric, topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray CT experiments. Marine and Petroleum Geology, 103, pp. 12–28. https://doi.org/10.1016/j.marpetgeo.2019.02.003
  • Yarmohammadi S., Kadkhodaie A., Hosseinzadeh S. (2020). An integrated approach for heterogeneity analysis of carbonate reservoirs by using image log based porosity distributions, NMR T2 curves, velocity deviation log and petrographic studies: A case study from the South Pars gas field, Persian Gulf Basin. Journal of Petroleum Science and Engineering, 192. https://doi.org/10.1016/j.petrol.2020.107283
  • Zhang X., Gao Z., Maselli V., Fan T. (2023). Pore Structure and Fractal Characteristics of Mixed Siliciclastic-Carbonate Rocks from the Yingxi Area, Southwest Qaidam Basin, China. SPE Reservoir Evaluation & Engineering 1–21. https://doi.org/10.2118/215839-PA
  • Zhao P., Wang Z., Sun Z., Cai J., Wang L. (2017). Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Mar. Petrol. Geol., 86, pp. 1067–1081. https://doi.org/10.1016/j.marpetgeo.2017.07.011
  •  

Елизавета Швалюк – аспирант, Центр науки и технологий добычи углеводородов, Сколковский институт науки и технологий
Россия, 121205, Москва, ул. Сикорского, д. 11
e-mail: elizaveta.shvalyuk@skoltech.ru

Алексей Чистяков – профессор, Центр науки и технологий добычи углеводородов, Сколковский институт науки и технологий
Россия, 121205, Москва, ул. Сикорского, д. 11

Нельсон Ба – магистрант, Центр науки и технологий добычи углеводородов, Сколковский институт науки и технологий
Россия, 121205, Москва, ул. Сикорского, д. 11

Алия Мухаметдинова – старший научный сотрудник, Центр науки и технологий добычи углеводородов, Сколковский институт науки и технологий
Россия, 121205, Москва, ул. Сикорского, д. 11

Антон Рябухин – инженер-исследователь, Центр науки и технологий добычи углеводородов, Сколковский институт науки и технологий
Россия, 121205, Москва, ул. Сикорского, д. 11

Михаил Спасенных – профессор, Центр науки и технологий добычи углеводородов, Сколковский институт науки и технологий
Россия, 121205, Москва, ул. Сикорского, д. 11

 

Для цитирования:

Shvalyuk E., Tсhistiakov A., Bah N., Mukhametdinova A., Ryabukhin A., Spasennykh M. (2023). New rock typing method for diagenetically modified carbonate reservoirs. Georesursy = Georesources, 25(4), pp. 203–218. https://doi.org/10.18599/grs.2023.4.15

 

For citation:

Shvalyuk E., Tсhistiakov A., Bah N., Mukhametdinova A., Ryabukhin A., Spasennykh M. (2023). New rock typing method for diagenetically modified carbonate reservoirs. Georesursy = Georesources, 25(4), pp. 203–218. https://doi.org/10.18599/grs.2023.4.15