ОРИГИНАЛЬНАЯ СТАТЬЯ

DOI: https://doi.org/10.18599/grs.2020.4.30-40

УДК 553.982

Моделирование гидротермального воздействия на юрские отложения Западно-Сибирского осадочного бассейна (серия с H₂O и H₂O₂)

М.Ю. Зубков

ООО «Западно Сибирский Геологический Центр», Тюмень, Россия Ê-mail: zubkovmyu@mail.ru

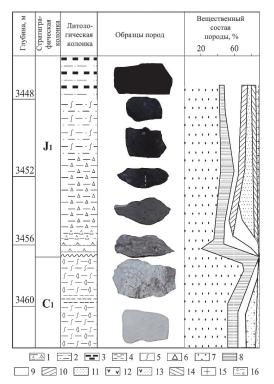
Рассмотрены результаты гидротермального моделирования формирования эпигенетических минеральных ассоциаций и вторичных коллекторов в различных типах осадочных пород юрского возраста Западной Сибири в системе Н,О-Н,О,. Эксперименты проводились при температуре 390°С, давлении 70 МПа и концентрациях Н,О,, изменявшихся от 0 до 37,5%. Продолжительность экспериментов составляла 10 суток. Во всех экспериментах в качестве буфера добавлялась шихта пирита. Установлено, что в экспериментах, в которых отсутствовала Н,О,, то есть гидротермальный флюид состоял только из воды, наблюдалось интенсивное образование битума и летучих компонентов из органического вещества, присутствовавшего в исходных образцах. Процесс генерации битумов и летучих компонентов сопровождался флюидоразрывом пород и образованием вторичной пористости. В этих условиях неустойчивыми оказались карбонаты (кальцит, сидерит), плагиоклазы и каолинит. Напротив, отмечалось образование гидротермального железистого хлорита. Растворение неустойчивых минеральных фаз гидротермальным флюидом привело к образованию дополнительной вторичной пористости. По мере увеличения концентрации Н,О, и, соответственно, кислорода в составе гидротермального флюида отмечалось всё более полное окисление присутствовавшего в составе осадков органического вещества до полного его исчезновения. С ростом концентрации кислорода в составе гидротермального флюида наблюдалось появление сначала магнетита, а затем гематита, самородной серы, ангидрита. В гидротермальных условиях с максимальной концентрацией кислорода отмечалось образование каолинита и разнообразных сульфатов помимо ангидрита, представленных миллозевичитом, квасцами, а также фазами с участием элементов, входящих в состав автоклавов – сульфатами никеля и хрома. Отмечалось интенсивное окремнение поверхности образцов, а также постоянное присутствие аморфного кремнезема, который наряду с разнообразными сульфатами является закалочной фазой. Эти минеральные фазы выделяются из пересыщенного гидротермального флюида вследствие его быстрого охлаждения и не успевают образовать хорошо ограненные кристаллы, а присутствуют в форме рыхлых микропористых агрегатов. Наряду с каолинитом отмечается образование гидротермального пленочного иллита.

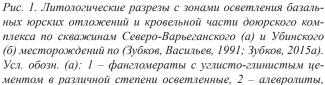
Полученные результаты свидетельствуют о том, что присутствие битума в юрских отложениях является важным поисковым признаком, указывающим на то, что в этом месте они подвергались гидротермальному воздействию, а значит, во-первых, образовались вторичные коллекторы с высокими фильтрационно-емкостными свойствами, а во-вторых, происходила интенсивная генерация углеводородов и, как следствие, формирование углеводородных залежей.

Ключевые слова: юрские отложения, гидротермальные флюиды, система Н,О-Н,О., битум, флюидоразрыв, вторичные коллекторы

Для цитирования: Зубков М.Ю. (2020). Моделирование гидротермального воздействия на юрские отложения Западно-Сибирского осадочного бассейна (серия с H,O и H,O₂). Георесурсы, 22(4), с. 30–40. DOI: https:// doi.org/10.18599/grs.2020.4.30-40

Введение


Скважины, пробуренные на доюрский комплекс, зачастую вскрывают мощные осветлённые зоны в перекрывающих его осадочных породах юрского возраста (Зубков и др., 1991; Зубков, Васильев, 1991; Зубков, 2015а; Зубков, 2017). Эти осветлённые породы носят признаки гидротермального изменения с характерными минеральными ассоциациями гидротермального происхождения (Зубков и др., 1991; Зубков, Васильев, 1991; Зубков, 2017). Особенно ярко процесс осветления проявляется в углистоглинистых отложениях, в которых зоны осветления постепенно по направлению снизу-вверх приобретают все более тёмную окраску по мере ослабления гидротермального


воздействия на эти породы (рис. 1а, б) (Зубков, Васильев, 1991; Зубков, 2015а).

Осветление осадочных пород, содержащих органическое вещество (ОВ), предполагает присутствие в составе гидротермальных флюидов (ГФ) окислителя, представленного, скорее всего, кислородом. Действительно, наличие кислорода в составе флюидов, отделяющихся от магматических тел, убедительно доказано В.И. Бгатовым в его небольшой по объёму, но богатой фактическим материалом монографии (Бгатов, 1985).

С целью проверки сделанного предположения о присутствии кислорода в составе гидротермальных флюидов и его участия в преобразовании юрских осадков были выполнены эксперименты с высокотемпературными растворами, содержащими в своем составе различную

^{© 2020} М.Ю. Зубков

3 – уголь, 4 – ГС и ГАС, 5 – поверхности скольжения, 6 – брекчевидная текстура, 7 – кварц, 8 – сидерит, 9 – каолинит, 10 – хлорит, 11 – иллит, 12 – мусковит, 13 – иллит с мусковитом, 14 – смешанослойные образования, 15 – органическое вещество, 16 – гидротермальные силициты; (б): 1 – глины, 2 – уголь, 3 – сланцы, 4 – кварц, 5 – сидерит, 6 – каолинит, 7 – иллит, 8 – корни растений, 9 – сферосидерит, 10 – нефтенасыщенность, 11 – органическое вещество, 12 – глинистые минералы, 13 – смешаннослойные образования, 14 – трещиноватость, поверхности скольжения

концентрацию кислорода. В качестве исходных образцов были выбраны углистые аргиллиты, песчаник и гравелит нижнеюрского возраста.

В качестве источника кислорода в проводившихся гидротермальных экспериментах использовалась перекись водорода (H₂O₂) в различном соотношении с водой.

Эксперименты проводились в Институте геологии и минералогии СО РАН им. В.С. Соболева под руководством д.г.-м.н., профессора Г.Ю. Шведенкова (Зубков, Шведенков, 2002).

Аппаратура и методики

Опыты проводились в реакторах (автоклавах) объемом около 10 см³, изготовленных из нержавеющей стали, давление в которых задавалось по коэффициенту заполнения, исходя из соотношения между давлением, объемом и температурой в этой системе (Справочник физических констант горных пород, 1969).

Образцы для экспериментов готовились следующим образом. С помощью алмазной пилы вырезались прямоугольные столбики сечением около 1 см² и длиной примерно 2-3 см. Изготовленные образцы помещались в реактор, заливались дистиллированной водой, и добавлялось необходимое количество Н,О, (ГОСТ 177-88, концентрация 30-40%).

В автоклаве в процессе его нагрева перекись водорода быстро разлагалась с образованием воды и кислорода:

$$2H_2O_2 \rightarrow 2H_2O + O_2. \tag{1}$$

Образцы после проведения экспериментов изучались и описывались под бинокулярным микроскопом, а затем исследовались с использованием рентгеноструктурного анализа (РСА) и растрового электронного микроскопа (РЭМ). Целью последней процедуры являлось определение изменения структуры порового пространства после гидротермальной обработки, а также обнаружения новообразованных минералов и их ассоциаций. Изменения минерального состава фиксировались главным образом на поверхности образца. Кроме того, исследованию подвергалась также часть осадков, образовавшихся в процессе выполнения экспериментов.

Опыты проводились при температуре 390°C и давлении, равном 70 МПа. Указанное значение температуры было выбрано в соответствии с результатами определения температуры гомогенизации газово-жидких микровключений в кристаллах кварца, отобранных автором из пласта КС, Салымского месторождения. Длительность экспериментов составляла 10 суток. Концентрация кислорода в ГФ задавалась раствором H₂O₂. Объемное соотношение H₂O/ H_2O_2 изменялось от 8/0 до 5/3. Во все автоклавы в качестве буфера добавлялась пиритовая шихта в количестве 1.65 г.

Оценка формирования вторичной пористости осуществлялась лишь на качественном уровне, поскольку она возникала главным образом в приповерхностной части образца, так как система образец-гидротермальный

флюид была закрытой, и процесс растворения образца флюидом прекращался по мере его насыщения растворяемыми минеральными компонентами. Кроме того, на поверхности образцов после завершения экспериментов часто наблюдалось отложение тонких корочек, сложенных новообразованными гидротермальными минералами, которые препятствовали анализу структурных изменений, происходивших на их поверхности и в частности оценке величины вторичной пористости. Поэтому для анализа характера растворения или выщелачивания поверхности образцов под действием ГФ по возможности выбирались участки, на которых отсутствовали отложения вторичных минералов, имевших гидротермальное происхождение.

С целью демонстрации изменений, произошедших с исходными образцами в результате воздействия на них ГФ с различной концентрацией в них кислорода, результаты экспериментов представлены в таблице 1.

Результаты исследований

Первые четыре опыта проводились с образцом темно-серого углисто-алевритистого аргиллита с тонкими углистыми прослойками и рассеянным растительным детритом. Он сложен, главным образом, каолинитом, хлоритом и иллитом с небольшим содержанием обломков кварца и плагиоклазов мелкоалевритовой размерности, а также примесью тонкодисперсного кальцита.

Целью проводимых экспериментов являлось установление закономерностей изменения минерального состава аргиллита в результате воздействия на него ГФ, имевшего в своем составе различную концентрацию кислорода, задаваемую соотношением H₂O/H₂O₂, которое изменялось от 8/0 до 5/3.

После завершения первого эксперимента с соотношением в ГФ Н₂О/Н₂О₂, равным 8/0, наблюдалось слабое осветление поверхности образца, образование на нем многочисленных капелек битума, «вытопившегося» из микролинзочек углей. Причем в зависимости от формы углефицированных древесных остатков, битум вытапливался или в виде довольно изометричных капель, или в форме удлиненных тел (рис. 2а-в). Давление, которое возникало при переходе твердых органических остатков в жидкое и газообразное состояния, превышало

прочностные свойства образца, и по этой причине в нем возникали трещины флюидоразрыва, по которым происходило выделение битума на его поверхность (рис. 2а-в). Полости, присутствующие в возникших каплях битума, свидетельствуют о том, что процесс его образования сопровождался выделением большого количества газообразных продуктов, представленных, главным образом, углеводородами (рис. 2б, в).

Анализ поверхности образца после эксперимента показал, что она подверглась слабому растворению, вследствие чего на ней образовались микропустоты, радиус которых в среднем не превышает 1.2–2.5 мкм (рис. 2в, г).

Сравнение данных РСА образца до и после гидротермального воздействия на него показало, что содержание кварца не изменилось, немного уменьшилась концентрация плагиоклазов, исчез кальцит, полностью растворился каолинит, напротив, возросла концентрация гидротермального хлорита (табл. 1). Хлорит выделился на поверхности образца в виде многочисленных мелких чешуевидных кристаллов (рис. 2г).

На поверхности пиритовых зерен, входящих в состав пиритовой шихты, местами также отмечается образование мелкочешуйчатого гидротермального железистого хлорита.

Во втором эксперименте соотношение Н,О/Н,О, в составе ГФ равнялось 7/1. После опыта наблюдалось слабое осветление поверхности образца, появился охристый налет, представленный мелкими кристалликами железистого хлорита и магнетита (рис. 3а). Так же, как и в предыдущем опыте, на поверхности рассматриваемого образца после завершения эксперимента появились капельки битума, однако их количество и размеры заметно меньше (рис. 2a, 3a).

Поверхность образца после опыта носила признаки слабого растворения, отмечаются тонкие трещины флюидоразрыва, по которым на нее вытекал битум (рис. 3а, б). Судя по элементному спектру, полученному с поверхности образца, она сложена, главным образом, кварцем, иллитом и гидротермальными магнетитом, а также железистым хлоритом (рис. 3б, левый спектр). Анализ элементного состава образовавшихся капелек битума показал, что в них отмечается высокое содержание серы, то есть это тиобитум (рис. 3б, правый спектр).

№ п/п	Литология	H ₂ O/ H ₂ O ₂	Ам.кр	Анг	Гем	Ил	Кв	Кт	Кц	Мг	Пл	Сид	Исх	л Гт	S°	Бит
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	Аргиллит углисто-алеврит.	8/0	н/д	+	0	>	=	<	<0	0	<	0	=	+	0	+
2	Аргиллит углисто-алеврит.	7/1	+	+	0	=	>	<0	<0	+	<	0	=	+	+	+
3	Аргиллит углисто-алеврит.	6/2	н/д	+	+	=	>	<0	<0	0	<	0	=	+	+	0
4	Аргиллит углисто-алеврит.	5/3	+	+	+	>	>	=	<0	0	<	0	=	+	н/д	0
5	Песчаник ср. зерн.	8/0	+	0	0	=	>	<0	0	0	<	<0	=	+	0	+
6	Песчаник ср. зерн.	5/3	+	+	+	=	>	=	0	0	<	<0	=	+	+	0
7	Аргиллит углистый	8/0	н/д	0	0	>	>	<0	0	0	<	<0	=	+	0	+
8	Аргиллит углистый	5/3	+	+	+	=	>	=	0	0	<0	<0	=	0	+	0
9	«Пёстрый» гравелит	5/3	н/д	+	0	>	=	>	0	+	0	<0	0	0	н/д	0

Табл. 1. Результаты определения минерального состава различных типов пород юрского возраста после воздействия на них гидротермальных флюидов, имевших различные соотношения H,O/H,O, при температуре 390°C и давлении 70 МПа. Примечания: Исх – исходная минеральная фаза, входящая в состав юрских отложений; Гт – новообразованная минеральная фаза гидротермального происхождения; < – уменьшение относительного содержания минеральной фазы; > – увеличение относительного содержания минеральной фазы; + – появление новой минеральной фазы гидротермального происхождения; 0 – отсутствие минеральной фазы; = – coxpaнeнue исходной минеральной фазы; <0 – уменьшение codepжания до полного исчезновения; h/d – нет данных; Am.kp – $amop \phi$ ный кремнезем; Анг – ангидрит; Бит – битум; Гем – гематит; Ил – иллит; Кв – кварц; Кт – каолинит; Кц – кальцит; Мг – магнетит; Π л – плагиоклазы; Cид – cидерит; Xл – xлорит; S o – cамородная cера

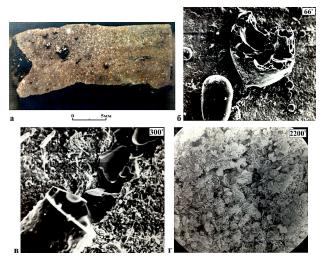


Рис. 2. Фотография образца углисто-алевритистого аргиллита (а) и снимки РЭМ его поверхности (б-г) после воздействия на него $\Gamma\Phi$, имевшего соотношение H,O/H,O,, равное 8/0. aвнешний вид образца после завершения эксперимента; б - капли битума различной формы и размеров; в – трещина флюидоразрыва, заполненная образовавшимся битумом с пустотами от выделившихся из него летучих; г – увеличенный фрагмент его поверхности с многочисленными мелкими чешуевидными кристаллами гидротермального железистого хлорита

Сопоставляя результаты РСА образца до и после воздействия на него ГФ можно отметить, что с его поверхности исчезли кальцит и каолинит, уменьшилось содержание плагиоклазов, а содержание хлорита, напротив, увеличилось (табл. 1).

В нижней части образца на границе с шихтой пирита наряду с тонкодисперсным магнетитом отмечается присутствие мелких кристаллов самородной серы.

В *тетьем* эксперименте отношение H_2O к H_2O_2 в $\Gamma\Phi$ составляло 6/2. Анализ извлеченного из автоклава после опыта образца показал, что его поверхность оказалась интенсивно выщелоченной, что привело к формированию многочисленных микропустот. Кроме того, из-за тонкой пленки мелкодисперсных окислов железа, отложившихся на его поверхности, образец приобрел светло-бурый цвет (рис. 3в). Присутствовавший в составе ГФ кислород окислил ОВ, поэтому под светло-бурой пленкой окислов железа поверхность образца имеет светло-серый цвет.

Даже при небольшом увеличении хорошо видна трещиновато-микропористая структура поверхности образца, которая сформировалась сначала за счёт флюидоразрыва, вызванного генерацией битума, а затем его окисления (рис. 3г). Раскрытость трещин составляет 30-80 мкм, а их протяженность - более 0.8-1.8 мм. Судя по данным элементного анализа поверхности образца, на ней присутствуют преимущественно кварц, иллит и гидротермальные минералы, представленные гематитом с небольшой примесью ангидрита и хлорита (рис. 3г).

Сопоставление данных РСА образца до и после воздействия на него ГФ показало, что с его поверхности исчезли каолинит и кальцит, уменьшилось содержание плагиоклазов, напротив, немного увеличилась концентрация хлорита, появился тонкочешуйчатый гематит (табл. 1).

Таким образом, увеличение в составе $\Gamma \Phi$ доли H_2O_2 (и соответственно, кислорода) ведет к тому, что ОВ, входящее в состав приповерхностной части образца, полностью

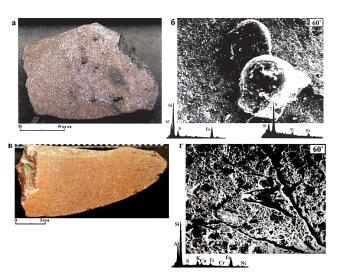


Рис. 3. Фотографии образцов углисто-алевритистого аргиллита (а, в) и снимки РЭМ их поверхности (б, г) после воздействия на них $\Gamma\Phi$, имевших соотношение H,O/H,O, равное 7/1 (a, б) и 6/2 (в, г). а – внешний вид образца после завершения опыта; б – капли битума и их элементный спектр (справа от снимка); в – внешний вид образца после завершения эксперимента; г – микрополости на его поверхности, образовавшиеся вследствие выщелачивания $\Gamma\Phi$ неустойчивых минералов и окисления OBи битума (здесь и далее под снимками приведены элементные спектры, полученные с их площади, если нет иных указаний)

окисляется, что, в свою очередь, вызывает формирование дополнительной вторичной емкости. Кроме того, вследствие окисления ОВ в составе флюида появляется углекислота, которая способствует растворению неустойчивых в этой термодинамической обстановке минералов, за счет которых также формируется дополнительная вторичная емкость. Кроме того, образуется H₂SO₄, благодаря реакции которой с кальцитом и анортитовым миналом плагиоклазов появляется ангидрит.

В четвертом эксперименте соотношение воды и Н₂О₂ в ГФ составляло 5/3. То есть в рассматриваемом эксперименте концентрация кислорода в составе ГФ была максимальной. Образец, извлеченный из автоклава после опыта, имел темно-бурую окраску. В нижней его части отмечается линейная субгоризонтальная двухфазная граница (жидкость-газ), обозначенная мелкими кристаллами гематита темно-серого цвета (рис. 4а).

Поверхность исходного образца первоначально была явно осветлена за счет окисления ОВ, содержавшегося в нем, на ней присутствуют многочисленные трещины флюидоразрыва и полости, оставшиеся от окислившихся углистых остатков и вытопившегося из них битума (рис. 4б). Раскрытость образовавшихся микротрещин составляет 15-75 мкм, а их протяженность часто превышает 1.5-2.0 мм (рис. 4б).

Судя по элементному спектру, полученному с поверхности образца, на нем присутствуют кварц, ангидрит и гематит (рис. 4б). При большом увеличении хорошо видны кристаллы гидротермального ангидрита, на поверхности которых и рядом с ними присутствуют многочисленные микрокристаллические агрегаты гематита (рис. 4в с элементным спектром зерен гематита).

Кроме ангидрита и гематита на поверхности образца присутствуют войлокоподобные агрегаты сульфатов Al, К и Na типа квасцов, а также сернокислого алюминия,

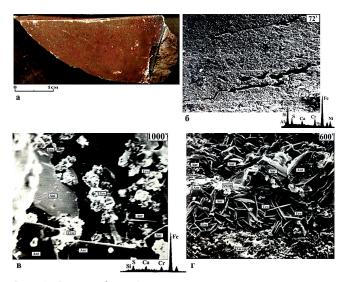


Рис. 4. Фотография образца углисто-алевритистого аргиллита (а) и снимки РЭМ его поверхности (б-г) после воздействия на него $\Gamma\Phi$, имевшего соотношение H,O/H,O, равное 5/3. а – внешний вид образца после завершения эксперимента; б – микрополости на его поверхности, образовавшиеся вследствие выщелачивания $\Gamma\Phi$ неустойчивых минералов и окисления образовавшегося битума; в - увеличенный фрагмент того же участка с крупными кристаллами ангидрита (Анг) и многочисленными мелкими агрегатами гематита (Гем) и их элементный спектр; г - многочисленные мелкие пластинчатые кристаллы Гем, расположенные на двухфазной границе (жидкость-газ), местами покрытые хлопьевидными агрегатами аморфного кремнезема (Ам.кр)

встречающегося в природе под названием миллозевичит, которые, вероятно, являются закалочной фазой, выпавшей из пересыщенного ГФ при его охлаждении.

На двухфазной границе отложился чешуевидный мелкокристаллический гематит, отдельные кристаллы которого имеют размеры 5-30 мкм. Вместе с ними присутствуют гораздо более крупные кристаллы ангидрита (рис. 4г). Из исходных минералов, входящих в состав образца, на его поверхности сохранился, главным образом, лишь кварц.

Анализ результатов РСА образца до и после воздействия на него ГФ с самым высоким содержанием в нем кислорода показал, что на его поверхности полностью окислилось ОВ, входившее в его состав. Уменьшилось содержание плагиоклазов, полностью исчез кальцит, увеличилась доля кварца, появились ангидрит, гематит, хлорит, и что очень важно, в отличие от предыдущих опытов, сохранился каолинит (табл. 1).

В следующих двух экспериментах в качестве исходного образца использовался светло-серый среднезернистый песчаник с довольно многочисленными включениями обугленного растительного детрита. Он сложен, главным образом, обломочными зернами кварца и плагиоклазов, глинистый цемент представлен каолинитом, хлоритом и иллитом, а карбонаты – исключительно микросферолитами сидерита.

В первом эксперименте в составе флюида соотношение Н,О/Н,О, составляло 8/0. После проведения эксперимента поверхность образца стала рыхлой и приобрела более светлый оттенок (рис. 5а).

Микроскопические исследования показали, что на поверхности образца образовались мелкие поры за счет растворения неустойчивых минеральных фаз, а

присутствовавший в его составе углистый детрит превратился в битум, имеющий многочисленные мелкие полости, возникшие вследствие выделения из него газообразных продуктов (рис. 5б). Судя по элементному составу рассматриваемого участка поверхность образца сложена преимущественно кварцем с примесью иллита (рис. 5б).

При больших увеличениях хорошо видна морфология образовавшихся микропустот, имеющих размеры от 3 до 20 мкм, а также многочисленные чешуевидные кристаллы гидротермального хлорита (рис. 5в). Обломочные зерна кварца не несут следов изменений, напротив, плагиоклазовые зерна оказались частично растворенными.

Сопоставление результатов РСА образца до и после гидротермальной обработки показало, что на его поверхности отмечается увеличение доли кварца, уменьшение содержания плагиоклазов, исчезновение каолинита и сидерита. Напротив, концентрация хлорита увеличилась. Содержание иллита практически не изменилось (табл. 1).

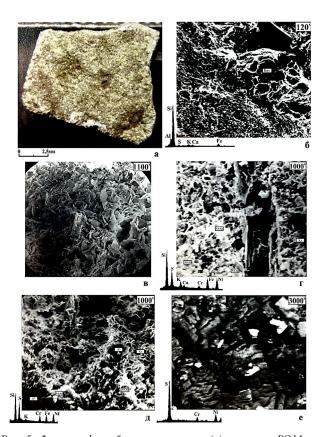


Рис. 5. Фотография образца песчаника (а) и снимки РЭМ его поверхности (б, в) после воздействия на него ГФ, имевшего соотношение Н,О/Н,О,, равное 8/0, снимок РЭМ поверхности того же песчаника после воздействия на него $\Gamma \Phi$, имевшего соотношение Н,О/Н,О,, равное 5/3 (г) и снимки РЭМ осадка, образовавшегося в автоклаве после этого опыта (д, е). а – внешний вид образца после завершения эксперимента; б – битум (Бит) с микрополостями от выделившихся из него газообразных продуктов; в – увеличенный фрагмент поверхности образца с многочисленными чешуевидными микрокристаллами иллита и гидротермального хлорита; г - полость, оставшаяся от окисленного углистого детрита, окруженная волокнистой массой сульфатов, а также Ам.кр с примесью мелких кристалов Хл, Гем и Анг; д – поверхность корочки, сложенной самородной серой (S^o) и войлоковидной массой, состоящей из сульфатов, Хл, Гем и Ам.кр; е – увеличенный фрагмент той же корочки, снятый в режиме КОМПО: темно-серая масса это S^o и ее элементный спектр

Во втором опыте соотношение Н,О/Н,О, в ГФ составляло 5/3. После эксперимента на поверхности образца наблюдалось возникновение двух участков: бурого и светло-серого, почти белого цвета, разделенных ровной прямолинейной границей, разделяющей двухфазную область (газ-жидкость).

Поверхность образца носит следы интенсивного выщелачивания. Кроме того, на нем отмечаются тонкие корочки новообразованных фаз, из которых лучше всего выделяется бурый налет, представленный микрокристаллическим гематитом. Интересно, что новообразованные агрегаты ангидрита часто залегают непосредственно на выщелоченных зернах плагиоклазов, что однозначно свидетельствует о том, что кальций, необходимый для образования ангидрита, извлекался именно из них.

На выщелоченной поверхности песчаника отмечаются тонкие пленочки и чешуйки новообразованных фаз, представленных, судя по результатам элементного анализа, главным образом, кремнеземом, окислами железа, а также сульфатами. В результате взаимодействия образца с ГФ произошло окремнение его поверхности (рис. 5г).

Анализ результатов РСА образца до и после воздействия ГФ с высокой начальной концентрацией в нем кислорода показал, что после опыта с его поверхности почти полностью пропали плагиоклазы и сидерит, напротив, доля хлорита и каолинита возросла, появились ангидрит и гематит, а также сульфаты Ni и Cr (табл. 1).

Осадок, поднятый со дна автоклава после опыта, представлял собой очень рыхлые микропористые микрозернистые и войлоковидные агрегаты, имеющие близкий набор слагающих их элементов, к таковому, что был получен и с поверхности самого образца (рис. 5д). Судя по их элементному составу, в них много аморфного кремнезема и разнообразных сульфатов, возможно, окислов, а также присутствует самородная сера (рис. 5е).

В отличие от предыдущего опыта, в котором в составе ГФ отсутствовала Н₂О₂, и наблюдалось разложение каолинита с образованием гидротермального хлорита, в рассматриваемом эксперименте наряду с хлоритом присутствует и каолинит (табл. 1).

В следующих двух экспериментах в качестве исходного образца использовался тонкослоистый углистый аргиллит, сложенный, главным образом, каолинитом, хлоритом, иллитом и обломочными зернами кварца и плагиоклазов мелкоалевритовой размерности, а также содержащий небольшую примесь мелких стяжений сидерита.

В первом эксперименте соотношение Н,О к Н,О, в ГФ составляло 8/0. После проведения эксперимента отмечалось едва заметное осветление и выщелачивание поверхности образца, кроме того на нем появились мелкие редкие капельки битума, образовавшегося из углистого детрита (рис. 6а).

Микроскопический анализ показал, что битум выплавлялся и вытекал на поверхность по трещинам флюидоразрыва, а вместо самих углистых прослоев возникали открытые полости, раскрытость которых составляет 10-30 мкм (рис. 6б, в).

Кроме трещин флюидоразрыва и полостей отмечаются микрокаверны округлой формы (диаметром 10–50 мкм), возникшие, скорее всего, вследствие растворения ГФ микростяжений сидерита (рис. 6б).

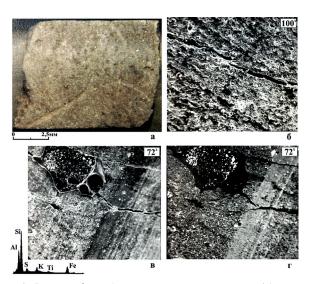


Рис. 6. Фотография образца углистого аргиллита (а) и снимки $P \ni M$ его поверхности (б-г) после воздействия на него $\Gamma \Phi$, имевшего соотношение H,O/H,O, равное 8/0. a – общий вид образца после опыта; б – выщелоченная поверхность с трещинами флюидоразрыва; в – расколовшаяся капля битума, образовавшаяся из углистого детрита в окружении трещин флюидоразрыва; г – тот же участок, снятый для сравнения в режиме КОМПО, светлые микрочастички – пирит

Судя по результатам элементного анализа поверхности образца после опыта, она сложена, главным образом, кварцем, иллитом и хлоритом (рис. 6в). На снимке того же участка образца, выполненного в режиме КОМПО, хорошо видны мелкие зерна пирита светло-серого (почти белого) цвета, отложившихся преимущественно на поверхности битума, имеющего на снимке темно-серый (почти черный) цвет (рис. 6г).

Анализ результатов РСА поверхности образца, полученных до и после гидротермальной обработки, показал, что воздействие ГФ вызвало резкое уменьшение содержания плагиоклазов, полностью растворились сидерит и каолинит. Напротив, содержание гидротермального хлорита увеличилось. Заметных изменений в концентрации иллита не наблюдается, а вот содержание кварца явно возросло, произошло окремнение поверхности образца (табл. 1).

Во втором эксперименте в составе ГФ соотношение Н₂О/Н₂О₂ составляло 5/3. После завершения эксперимента поверхность образца приобрела светло-серый цвет, однако местами на образце (особенно в его нижней части) отложились окислы железа, придавшие ему темно-серый, иногда с буроватым оттенком цвет (рис. 7а). Отмечается интенсивное растворение неустойчивых минералов и окисление ОВ, входившего в состав углистого аргиллита.

Вследствие окисления углистого материала, входившего в состав образца, сформировались протяженные полости (рис. 7б) или отдельные микрокаверны. Поверхность образца вокруг полости покрыта микроагрегатами самородной серы, сульфата никеля и небольшим количеством аморфного кремнезема (рис. 7б).

Анализ участков, покрытых темно-серой, с буроватым оттенком пленкой, показал, что они сложены несколькими минеральными фазами. Чтобы выделить минералы, сложенные более тяжелыми элементами, один и тот же участок был снят в обычном и КОМПО режимах (рис. 7в, г, соответственно). На снимке, снятом в режиме КОМПО,

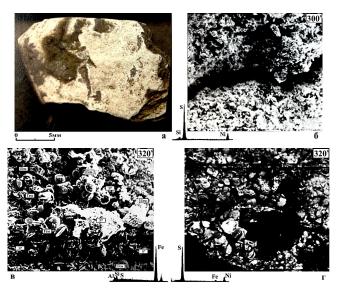


Рис. 7. Фотография образца углистого аргиллита (а) и снимки $P \ni M$ его поверхности (б-г) после воздействия на него $\Gamma \Phi$, имевшего соотношение H,O/H,O, равное 5/3. a – общий вид образца после опыта; б – микротрещина, образовавшаяся в результате флюидоразрыва и последующего окисления присутствовавшего в ней битума (Бит), окруженная мелкими агрегатами S° и сульфата Ni; в – участок с многочисленными мелкими агрегатами пластинчатых кристаллов Гем и их элементный спектр; *г* – тот же участок, снятый для сравнения в режиме КОМПО, на котором почти в его центре расположено крупное зерно S° и его элементный спектр (светлые частички – Гем; темные, до почти черных, участки, сложенные S°)

четко выделяются зерна гематита, имеющие светло-серый цвет (рис. 7г). Почти в центральной части снимков расположен крупный агрегат самородной серы (диаметром около 0.1 мм), имеющий темно-серый, почти черный цвет (рис. 7г с элементным спектром серы).

Сопоставление результатов РСА поверхности образца, полученных до и после его гидротермальной обработки, показало, что воздействие ГФ привело к практически полному растворению плагиоклазов и сидерита. Немного снизилась концентрация хлорита, сохранился каолинит, причем их кристаллическая структура характеризуется слабой упорядоченностью (пики на дифрактограммах стали более широкими, а их интенсивность уменьшилась). Заметно возросла доля кварца. Появились гематит, ангидрит, самородная сера и сульфат Ni (табл. 1). OB, присутствовавшее в приповерхностной части образца и образовавшийся из него битум, полностью окислились, что привело к формированию дополнительной пористости в исходном образце.

В последнем эксперименте гидротермальному воздействию подвергался «пестрый» гравелит, сложенный обломками кварца, сцементированными каолинитом и иллитом с небольшой примесью мелких оолитов сидерита (рис. 8а). Этот образец отобран из базального пласта ЮК,, Талинской площади и в отличие от рассмотренных ранее, подвергался гидротермальному воздействию в природных условиях (Зубков и др., 1991; Зубков, 2017). Соотношение Н₂О и Н₂О₂ в ГФ в рассматриваемом эксперименте равнялось 5/3.

После эксперимента на поверхности образца сформировались три зоны. Нижняя зона, граничащая с пиритовой шихтой, слабо изменила первоначальную окраску, средняя приобрела бурый оттенок, а верхняя оказалась

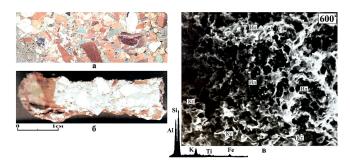


Рис. 8. Фотографии исходного образца «пестрого» гравелита (а) и того же образца (б), а также снимок РЭМ поверхности последнего (в) после воздействия на него $\Gamma\Phi$, имевшего соотношение H,O/H,O,, равное 5/3. a — общий вид исходного образца; б – он же после опыта; в – фрагмент его поверхности, на котором присутствуют плохо окристаллизованные агрегаты каолинита (Кт) (внизу) и пленочного иллита (Ил) (остальная пористая масса)

интенсивно осветленной (рис. 8б). Вероятнее всего в автоклаве существовали две фазы – нижняя часть автоклава была заполнена жидкой, а верхняя – газообразной фазами.

Анализ состава новообразованных фаз показал, что бурый налет на поверхности образца представлен магнетитом. Приповерхностная часть выщелоченных зерен оказалась покрытой плохо окристаллизованным каолинитом с пленочным иллитом (рис. 8в). Редкие мелкие оолиты сидерита, присутствовавшие на поверхности образца, в результате взаимодействия с ГФ растворились, а на их месте образовались тонкие корочки магнетита, выстилающие поверхности пустот, оставшихся на месте этих оолитов (рис. 8б).

Следует отметить, что в результате гидротермальной обработки «пестрого» гравелита в отличие от рассмотренных ранее экспериментов, наблюдались минимальные изменения в его минеральном составе и структуре его поверхности. Хлорит в этом опыте не образовался (табл. 1).

Обсуждение полученных результатов

Несмотря на различный литологический состав образцов, участвовавших в экспериментах, наблюдались схожие закономерности в изменениях их минерального состава и образовании минеральных фаз гидротермального происхождения в зависимости от содержания в ГФ кислорода (табл. 2).

В экспериментах, в которых ГФ состоял только из воды, наблюдалось растворение плагиоклазов, карбонатов, пирита и каолинита, а исходное ОВ превращалось в тиобитум и летучие компоненты, причем этот процесс сопровождался флюидоразрывом. Все эти гидротермальные преобразования образцов приводили к формированию в них вторичной пористости (рис. 26, 2в, 5в, 6б).

Новообразованные фазы в рассматриваемых экспериментах представлены битумом, углеводородными летучими, хлоритом, ангидритом и аморфным кремнеземом (рис. 2б-г, 5б, 5в, 6в, 6г).

Гидротермальный хлорит образовывался за счет растворения каолинита, плагиоклазов и сидерита, а также отчасти пиритовой шихты. Из первых двух минералов в его состав поступали Al и Si, а из двух последних – Fe.

Небольшое количество ангидрита возникало в результате окисления присутствовавшим в автоклаве кислородом воздуха пиритной серы и/или серы, входившей в состав тиобитумов, с образованием сульфат-иона, а источником Са служили растворяемые ГФ кальцит и анортитовый минал плагиоклазов.

Аморфный кремнезем являлся закалочной фазой, находившейся в растворенном виде в составе ГФ и выпадавшей из него вследствие быстрого охлаждения (закалки) автоклавов. В природных условиях растворенный в ГФ кремнезем выделяется в поровом пространстве песчаников в виде регенерационных граней обломочных зерен кварца и/или в форме его мелких кристаллов (Зубков и др., 1991; Зубков, 2017).

Помимо битума, в результате гидротермального воздействия на исходное ОВ юрских отложений, образуется большое количество летучих компонентов, в состав которых входят углеводороды от C_1 до, вероятно, C_{25} , если учитывать температуру ГФ, равную 390°C. Высокое содержание в битуме серы, вероятно, свидетельствует о том, что выделяющиеся вследствие гидропиролиза из исходного ОВ углеводороды практически не содержат в себе гетероатомы, которые накапливаются в «остаточном» продукте - тиобитуме.

Появление в составе ГФ кислорода в заметном количестве $(H_2O/H_2O_2 = 7/1)$ привело к почти полному окислению исходного ОВ (рис. 3а) и образованию новых гидротермальных фаз, представленных магнетитом и самородной серой:

$$3FeS_2 + 2O_2 = Fe_3O_{41} + 6S^0.$$
 (2)

Образование ангидрита объясняется окислением пирита и/или серы кислородом до серной кислоты и её взаимодействием с Са, поступающим в состав ГФ в результате растворения кальцита и зерен плагиоклазов.

Подобно экспериментам, в которых в составе ГФ отсутствовала Н₂О₂, в рассматриваемом опыте отмечается формирование гидротермального хлорита и аморфного кремнезема, а также растворение кальцита, сидерита, плагиоклазов и каолинита (табл. 2).

Дальнейший рост концентрации кислорода в составе $\Gamma\Phi$ (H,O/H,O, = 6/2) приводит к полному окислению OB и битума, а также образованию вместо магнетита гематита:

$$4FeS_2 + 3O_2 = 2Fe_2O_{31} + 8S^0.$$
 (3)

Причем помимо гематита образуется большое количество самородной серы (уравнение (3)). Окисление ОВ и образовавшегося из него битума предполагает протекание в автоклаве следующей реакции:

$$C_{\text{opr.}} + O_2 = CO_2. \tag{4}$$

Следовательно, в составе ГФ в результате протекающих в автоклаве реакций О, с ОВ обязательно появится СО,

Еще большее увеличение концентрации кислорода в составе $\Gamma \Phi (H_2O/H_2O_2 = 5/3)$ вызывает те же изменения в составе образцов, что и в опытах с меньшей его концентрацией. Единственным важным отличием этих опытов от предыдущих является сохранение или, возможно, образование гидротермального каолинита (табл. 2).

Скорее всего, этот факт объясняется очень высокой кислотностью ГФ вследствие образования большого количества серной кислоты в результате окисления пирита и серы:

$$2S^{0} + 3O_{2} + 2H_{2}O = 2H_{2}SO_{4}.$$
 (5)

В этих условиях происходит образование каолинита и ангидрита за счет анортитового минала плагиоклазов:

 $CaAl_2Si_2O_8 + H_2SO_4 + H_2O = Al_2[Si_2O_5](OH)_{41} + CaSO_{41}$. (6) Процесс каолинитизации в кислой среде можно продемонстрировать также на примере реакции кислого ГФ с альбитовым миналом плагиоклазов:

$$2NaAlSi_{3}O_{8} + 2H^{+} + H_{2}O = Al_{2}[Si_{2}O_{5}](OH)_{4} + 4SiO_{2} + 2Na^{+}.$$
(7)

Из приведенного уравнения следует, что в результате образования гидротермального каолинита в кислой среде обязательно образуется кремнезём, то есть происходит окремнение исходных образцов.

Таким образом, под действием ГФ с высоким содержанием кислорода происходит интенсивное окремнение поверхности образца, что связано с образованием большого количества серной кислоты и, соответственно, высокой кислотности ГФ. В этих чрезвычайно кислых условиях растворяются и выносятся практически все элементы кроме кремнезёма, обладающего чрезвычайно низкой растворимостью в кислом ГФ (Борисов, 2000; Гаррелс, Крайст, 1968; Зубков, 2015а; Зубков, 2017; Набоко, 1962; Смирнов, 1982; Соколов, 1971).

Проведенные эксперименты показали, что хлорит является более высокотемпературной фазой, чем каолинит. Однако в очень кислых условиях даже при высокой температуре (390°C) оба минерала встречаются вместе (табл. 2). Не исключено, что в этих условиях хлорит является метастабильной фазой. Об этом же свидетельствует тот факт, что в эксперименте с «пестрым» гравелитом при максимальном содержании в составе ГФ кислорода $(H_2O/H_2O_2 = 5/3)$ образование гидротермального хлорита не наблюдалось, а каолинит сохранялся (табл. 1, 2).

	Отношение Н2О/Н2О2								
	8/0	7/1	6/2	5/3					
•	Битум,	Битум,	Хлорит,	Хлорит,					
	Хлорит,	Хлорит,	Ангидрит,	Каолинит,					
Гидротермальные	Ангидрит,	Ангидрит,	Гематит,	Иллит, Гематит,					
новообразования	Аморфный кремнезём	Аморфный кремнезём,	Аморфный кремнезём,	Ангидрит,					
		Магнетит,	Самородная сера	Аморфный кремнезём,					
		Самородная сера							
	Увеличение относительного содержания кварца								
	Каолинит,	Кальцит,	Кальцит,	Кальцит,					
Harramayurun	Кальцит,	Каолинит,	Каолинит,	Плагиоклазы,					
Неустойчивые	Исходное ОВ,	Плагиоклазы,	Плагиоклазы,	Исходное ОВ,					
фазы	Плагиоклазы,	Исходное ОВ,	Исходное ОВ,	Сидерит,					
	Сидерит, Пирит	Сидерит, Пирит	Сидерит, Пирит	Пирит					

Табл. 2. Результаты определения минерального состава различных типов пород юрского возраста после воздействия на них гидротермальных флюидов, имевших различные соотношения H,O/H,O, при температуре 390°C и давлении 70 МПа

Не исключено, что образование железистого хлорита провоцируется присутствием пиритовой шихты, которая при взаимодействии с кислородсодержащим гидротермальным флюидом растворяется с образованием большого количества ионов железа и серной кислоты:

$$2FeS_2 + 7O_2 + 2H_2O = 2Fe^{2+} + 4SO_4^{2-} + 4H^+.$$
 (8)

Установлено, что во всех проведенных экспериментах с участием ГФ неустойчивыми фазами являлись кальцит, сидерит, пирит, плагиоклазы, ОВ и каолинит (за исключением опытов с высокой концентрацией образующейся серной кислоты).

Растворение этих минеральных фаз и превращение ОВ в битум приводит к образованию вторичной пористости. Следовательно, участки, в пределах которых в юрские отложения происходило внедрение ГФ, должны характеризоваться повышенными фильтрационно-емкостными свойствами (ФЕС). Кроме того, высокотемпературные ГФ активно воздействуют на исходное ОВ, присутствующее в составе юрских осадков, вызывая активную генерацию УВ, которые, растворив в себе некоторую часть смолистоасфальтеновых компонентов, входящих в состав битума, мигрируют в породы-коллекторы. Остающийся битум, состоящий из наиболее высокомолекулярных УВ и гетеросоединений, в силу своей слабой подвижности (из-за высокой вязкости), сохраняется на месте или мигрирует на небольшое расстояние от материнских пород.

Наиболее ярким примером описанной выше модели генерации УВ и битума под влиянием ГФ является баженовская свита. В участках, где её отложения подвергались воздействию высокоэнтальпийных ГФ на поверхностях трещин и/или каверн, отмечаются разнообразные минералы гидротермального происхождения, представленные, например, кристаллами кварца, магнезиального кальцита, баритокальцита и других, окруженные и частично покрытые битумом, образовавшимся из исходного ОВ, входящего в её состав (рис. 9а-в). Часто встречаются маломощные линзы битума, также образовавшегося в результате гидропиролиза исходного ОВ баженовской свиты гидротермальным флюидом (рис. 9г). Поэтому правы были классики, называвшие отложения баженовской свиты битуминозными, по крайней мере, в тех участках, где они подвергались гидротермальному воздействию.

Битум встречен также в поровом пространстве так называемых псевдокварцитов, сложенных мелкими кристаллами гидротермального кварца (пласт HO_{1}^{0}), встреченных в пределах Грибного и Ахтамарского месторождений (рис. 10а-г). Скорее всего, под действием ГФ битум образовался из ОВ баженовской свиты, перекрывающей этот пласт, и проник в поровое пространство псевдокварцитов, обладая благодаря высокой температуре достаточной пластичностью и, соответственно, подвижностью.

В поровом пространстве юрских песчаников на Красноленинском своде и в Шаимском нефтегазоносном районе также встречается битум (рис. 10д, е). Чаще всего эти песчаники находятся на небольшом расстоянии от нефтегазоматеринских отложений, также подвергавшихся воздействию высокоэнтальпийных ГФ. В рассматриваемых районах таковыми являются аналоги баженовской свиты (нижнетутлеймская и нижнеданиловская подсвиты).

Таким образом, обнаружение битумов в составе юрских отложений является важным поисковым признаком,

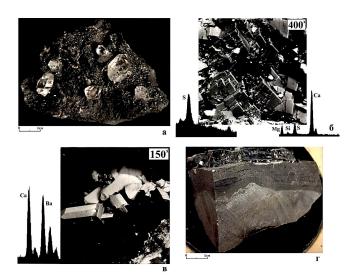


Рис. 9. Битумы в баженовской свите: Ем-Еговская (а), Пальяновская (г) площади и Маслиховское (б, в) месторождение. Кристаллы гидротермальных минералов, окруженные и частично покрытые битумом: а – кварца; б – магнезиального кальцита, элементный спектр которого расположен справа, а слева – спектр ванадиеносного тиобитума; в – баритокальцита и его элементный спектр; г – линза тиобитума

свидетельствующим о том, что в этом месте происходило воздействие ГФ на нефтематеринские породы, которые в результате этого воздействия активно генерировали УВ, а в породах-коллекторах формировалась дополнительная (вторичная) пористость.

В заключение отметим, что исследование минерального состава образцов, отобранных из осветлённых (обелённых) юрских отложений, показало, что в них отсутствуют магнетит и тем более гематит гидротермального происхождения (Зубков и др., 1991, Зубков, 2017). Тем не менее присутствовавшее в их составе ОВ оказалось полностью или почти полностью окисленным.

В описываемых образцах отмечаются гидротермальные минералы: сульфаты (ангидрит, барит), каолинит, сидерит, кварц и в редких случаях самородная сера (Зубков и др., 1991, Зубков, 2015б, 2017). Из этих фактов можно заключить, что концентрация кислорода в природных ГФ была гораздо меньше, чем в проведенных экспериментах. Но поскольку объемы и время воздействия природных ГФ на исходные юрские отложения были гораздо более значительными, чем в выполненных экспериментах, то ОВ, входившее в их состав, несмотря на невысокую концентрацию кислорода в составе ГФ, успевало окислиться. Кроме того, не следует забывать, что в проводившихся экспериментах система являлась закрытой и продукты гидротермальных реакций накапливались в автоклавах, в то время, как природные системы, как правило, являются в той или иной мере открытыми, и образующиеся продукты имеют возможность покидать место, где они образовались.

Интенсивное разложение карбонатов в проведенных экспериментах объясняется отсутствием карбонат-ионов в составе ГФ, имевшего чисто водный состав. В опытах, в которых присутствовала Н₂О₂, в добавок возникала кислая среда из-за образования серной кислоты, поэтому карбонаты легко растворялись в кислом ГФ. Следовательно, природные ГФ содержали в своем составе гораздо меньше кислорода, чем в выполненных опытах, кроме того, в них

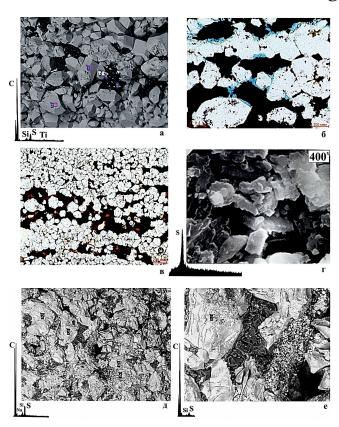


Рис. 10. Битумы в псевдокварцитах (пласт H_{i}^{0}) Грибного (а, б) и Ахтамарского (в, г) месторождений, а также в песчанике (пласт Π_1) Шаимского нефтегазоносного района (д, е). aснимок РЭМ кристаллов гидротермального кварца, поровое пространство между кристаллами заполнено тиобитумом (под снимком – его элементный спектр); б – прозрачный петрографический шлиф того же образца, прокрашенный голубой смолой, в котором поровое пространство почти полностью заполнено тиобитумом; в – прозрачный петрографический шлиф, прокрашенный красной смолой, почти все поровое пространство между кристаллами кварца заполнено тиобитумом; г – увеличенный фрагмент снимка РЭМ того же образца, на снимке присутствует комковатый агрегат тиобитума (под снимком — его элементный спектр); ∂ — снимок $P \ni M$ песчаника, поровое пространство занято тиобитумом (под снимком – его элементный спектр); е – увеличенный фрагмент предыдущего снимка с тиобитумом и его элементным спектром

присутствовало достаточное количество карбонат-ионов, необходимых для образования карбонатов и, в первую очередь, имевших железистый состав.

Входившее в состав юрских осадков ОВ выступало в роли буфера, способствовавшего сохранению двухвалентного состояния Fe, содержавшегося в составе ГФ. Благодаря этому, в осветлённых юрских отложениях, наряду с гидротермальными кварцем и каолинитом, часто присутствуют сидерит и анкерит (Зубков и др., 1991, Зубков, 2017). Отсутствие гидротермального хлорита в юрских отложениях, подвергавшихся воздействию ГФ, свидетельствует о том, что они имели кислый состав и, вероятно, более низкую температуру, чем в проводившихся экспериментах.

Выводы

1. В экспериментах с ГФ, имеющим чисто водный состав, наблюдается интенсивная генерация углеводородов и битума из исходного ОВ, что сопровождается флюидоразрывом породы и приводит к образованию дополнительной вторичной пористости.

- 2. В этих же экспериментах происходит растворение неустойчивых минералов, в результате чего также формируется вторичная пористость, улучшаются ФЕС пород, и происходит их окремнение.
- 3. По мере увеличения доли Н₂О₂ в составе ГФ наблюдается первоочередное окисление исходного ОВ и образующегося из него битума, разложение карбонатов, каолинита и плагиоклазов, появление сначала магнетита, который затем по мере роста концентрации Н₂О₂ (кислорода) сменяется гематитом, образуются самородная сера, ангидрит и железистый хлорит.
- 4. В экспериментах с максимальной концентрацией Н,О, и, соответственно, высокой кислотностью гидротермального флюида, сохраняется каолинит.
- 5. Полученные результаты свидетельствуют о том, что природные ГФ имели меньшую концентрацию кислорода в своем составе, чем в проведенных экспериментах, так как в участках, подвергшихся их воздействию, не встречены окислы железа, хотя присутствуют сульфаты Са и Ва, самородная сера, а сами породы интенсивно осветлены.
- 6. Присутствие в породах, подвергавшихся в природных условиях гидротермальному воздействию сидерита и каолинита, но отсутствие в них хлорита свидетельствует о том, что природные ГФ имели, вероятно, более низкую температуру (менее 390°C), кислый состав и были насыщены карбонат-ионом, который отсутствовал или присутствовал в незначительном количестве в составе ГФ в проведенных экспериментах.
- 7. Обнаружение битума в юрских отложениях Западно-Сибирского (и других) осадочного бассейна является важным поисковым признаком, свидетельствующим о том, что на этом участке породы подвергались гидротермальному воздействию, которое вызывало активную генерацию углеводородов из исходного ОВ и формирование вторичной пористости, что в совокупности с большой вероятностью могло привести к формированию углеводородных залежей с высокими фильтрационно-емкостными свойствами.

Благодарности

Автор выражает благодарность рецензенту за замечания, учет которых позволил повысить качество статьи.

Литература

Бгатов В.И. (1985). История кислорода земной атмосферы. М.: Недра, 87 с.

Борисов М.В. (2000). Геохимические и термодинамические модели жильного гидротермального рудообразования. М.: Научный Мир, 360 с. https://doi.org/10.1023/A:1002865109271

Гаррелс Р.М., Крайст Ч.Л. (1968). Растворы, минералы, равновесия. М.: Мир, 318 с.

Зубков М.Ю. (2015а). Вторичные коллекторы тектоно-гидротермального происхождения в кровельной части доюрского комплекса Западно-Сибирской плиты и способы их прогноза. Геология нефти и газа, 6, с. 78-95.

Зубков М.Ю. (2015б). Особенности распределения урана в битуминозных отложениях баженовской свиты (Западная Сибирь). Каротажник, 5(251), с. 3-32.

Зубков М.Ю. (2017). Тектоногидротермальные процессы в юрских отложениях Западной Сибири. Геология нефти и газа, 1, с. 60-76.

Зубков М.Ю., Васильев О.Е. (1991). Перспективы нефтегазоносности доюрского комплекса Шаимского района. В кн.: Геология и нефтегазоносность триас-среднеюрских отложений Западной Сибири. Новосибирске: СНИИГГиМС, с. 124-137.

Зубков М.Ю., Дворак С.В., Романов Е.А., Чухланцева В.Я. (1991). Гидротермальные процессы в шеркалинской пачке Талинского месторождения (Западная Сибирь). Литология и полезные ископаемые, 3, с. 122-132.

Зубков М.Ю., Шведенков Г.Ю. (2002). Экспериментальное моделирование процесса формирования вторичных коллекторов под действием гидротермальных флюидов различного состава. Сб. V Научно-практ. конф.: Пути реализации нефтегазового потенциала ХМАО. Т. І. Ханты-

Набоко С.И. (1962). Формирование современных гидротерм и метаморфизм растворов и пород. Вопросы вулканизма, с. 52-62.

Смирнов В.И. (1982). Геология полезных ископаемых. М.: Недра, 670 с. Соколов В.А. (1971). Геохимия природных газов М.: Недра, с. 336.

Справочник физических констант горных пород. (1969). Под ред. С. Кларка мл. М.: Мир, 544 с.

Сведения об авторе

Михаил Юрьевич Зубков – канд. геол.-мин. наук, директор, ООО «Западно Сибирский Геологический Центр» Россия, 625002, Тюмень, ул. Сургутская, д.11, корп.4/9

> Статья поступила в редакцию 08.05.2020; Принята к публикации 09.10.2020; Опубликована 11.12.2020

Modeling the hydrothermal impact on the Jurassic deposits of the West Siberian sedimentary basin (series with H₂O and H₂O₂)

M.Yu. Zubkov

West Siberian Geological Center LLC, Tyumen, Russian Federation E-mail: ZubkovMYu@mail.ru

Abstract. The results of hydrothermal modeling of the formation of epigenetic mineral associations and secondary reservoirs in various types of sedimentary rocks of the Jurassic age in Western Siberia in the H₂O-H₂O₃ system are considered. The experiments were carried out at a temperature of 390°C, a pressure of 70 MPa and H₂O₂ concentrations varying from 0 to 37.5%. The duration of the experiments was 10 days. In all experiments, a pyrite mixture was added as a buffer. It was found that in experiments in which there was no H2O2, that is, the hydrothermal fluid consisted only of water, there was an intense formation of bitumen and volatile components from the organic matter present in the initial samples. The process of generation of bitumen and volatile components was accompanied by fluid fracturing of rocks and the formation of secondary porosity. Under these conditions, carbonates (calcite, siderite), plagioclases, and kaolinite turned out to be unstable. On the contrary, the formation of hydrothermal ferruginous chlorite was noted. Dissolution of unstable mineral phases by hydrothermal fluid led to the formation of additional secondary porosity. As the concentration of H2O2 and, accordingly, oxygen in the composition of the hydrothermal fluid increased, more and more complete oxidation of the organic matter present in the composition of the sediments was noted until its complete disappearance. With an increase in the oxygen concentration in the composition of the hydrothermal fluid, the appearance of first magnetite and then hematite, native sulfur, and anhydrite was observed. Under hydrothermal conditions with a maximum oxygen concentration, the formation of kaolinite and various sulfates in addition to anhydrite, represented by millosevichite, alum, as well as phases with the participation of elements that make up autoclaves, nickel and chromium sulfates, was noted. Intensive silicification of the sample surface is noted, as well as the constant presence of amorphous silica, which, along with various sulfates, is a quenching phase. These mineral phases are separated from the supersaturated hydrothermal fluid due to its rapid cooling and do not have time to form well-faceted crystals, but are present in the form of loose microporous aggregates. Along with kaolinite, the formation of hydrothermal film illite is noted.

The results obtained indicate that the presence of bitumen in the Jurassic sediments is an important exploratory feature, indicating that in this place they were subjected to hydrothermal action, which means, firstly, secondary reservoirs with high filtration and capacity properties were formed, and second, there was an intensive generation of hydrocarbons and, as a consequence, the formation of hydrocarbon deposits.

Keywords: Jurassic deposits, hydrothermal fluids, H₂O-H₂O₃ system, bitumen, fluid fracture, secondary collectors

Recommended citation: Zubkov M.Yu. (2020). Modeling the hydrothermal impact on the Jurassic deposits of the West

Siberian sedimentary basin (series with H₂O and H₂O₂). Georesursy = Georesources, 22(4), pp. 30–40. DOI: https://doi. org/10.18599/grs.2020.4.30--40

References

Bgatov V.I. (1985). The history of oxygen in the Earth's atmosphere. Moscow: Nedra, 87 p. (In Russ.)

Borisov M.V. (2000). Geochemical and thermodynamic models of vein hydrothermal ore formation. Moscow: Nauchnyi Mir, 360 p. (In Russ.) https:// doi.org/10.1023/A:1002865109271

Handbook of Physical Constants. (1969). Clarke, S.P., Jr., Ed. Trans. under the title Spravochnik fizicheskikh konstant gornykh porod. Moscow: Mir, 1969. (In Russ.)

Garrels R.M., Kraist Ch.L. (1968). Solutions, minerals, equilibria. Moscow: Mir, 318 p. (In Russ.)

Naboko S.I. (1962). Formation of modern hydrothermal fluids and metamorphism of solutions and rocks. *Volcanism issues*, pp. 52–62. (In Russ.)

Smirnov V.I. (1982). Geology of minerals. Moscow: Nedra, 670 p.

Sokolov V.A. (1971). Geochemistry of natural gases. Moscow: Nedra, 336 p. (In Russ.)

Zubkov M.Yu. (2015a). Secondary reservoirs of tectonic-hydrothermal origin in the roof of the pre-Jurrasic complex in the West-Siberian plate and its forecast methods. Geologiya nefti i gaza = Russian Oil and Gas Geology, 6, pp. 78-95. (In Russ.)

Zubkov M.Yu. (2015b). Peculiarities of uranium distribution in bituminous deposits of the Bazhenov formation (Western Siberia). Karotazhnik, 5(251), pp. 3-32. (In Russ.)

Zubkov M.Yu. (2017). Tectonic-hydrothermal processes in the West Siberian Jurassic deposits. Geologiya nefti i gaza = Russian Oil and Gas Geology, 1, p. 60-76. (In Russ.)

Zubkov M.Yu., Dvorak S.V., Romanov E.A., Chukhlantseva V.Ya. (1991). Hydrothermal processes in the Sherkala member of the Talinskove field (Western Siberia). Lithology and Mineral Resources, 3, pp. 122-132. (In Russ.)

Zubkov M.Yu., Shvedenkov G.Yu. (2002). Experimental modeling of the formation of secondary reservoirs under the influence of hydrothermal fluids of various compositions. V Sci. and Pract. Conf.: Ways of realizing the oil and gas potential of the Khanty-Mansi Autonomous Okrug. Coll. papers. V. I. Khanty-Mansiysk, pp. 323–332. (In Russ.)

Zubkov M.Yu., Vasiliev O.E. (1991). Prospects for oil and gas potential of the pre-Jurassic complex of the Shaim region. In: Geology and oil and gas content of the Triassic-Middle Jurassic deposits of Western Siberia. Novosibirsk: SNIIGGiMS, pp. 124-137. (In Russ.)

About the Author

Mikhail Yu. Zubkov - Cand. Sci. (Geology and Mineralogy), Director, West Siberian Geological Center LLC

build. 4/9, 11, Surgutskaya st., Tyumen, 625002, Russian Federation

> Manuscript received 8 May 2020; Accepted 9 October 2020; Published 11 December 2020