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Abstract. The main part of hydrocarbon production in Russia is represented by old oil and gas producing 
regions. Such areas are characterized by a significant decrease in well productivity due to high water cut 
and faster production of the most productive facilities. An important role for such deposits is played by 
stabilization of production and increase of mobile reserves by improving the development system. This is 
facilitated by various geological and technical measures.

Today, an urgent problem is to increase the reliability of the forecast of technological and economic 
efficiency when planning various geological and technical measures. This is due to the difficulty in selecting 
candidate wells under the conditions of the old stock, the large volume of planned activities, the reduction in 
the profitability of measures, the lack of a comprehensive methodology for assessing the potential of wells 
for the short and long term.

Currently, there are several methods to evaluate the effectiveness of geological and technical measures: 
forecast based on geological and field analysis, statistical forecast, machine learning, hydrodynamic modeling. 
However, each of them has its own shortcomings and assumptions. The authors propose a methodology 
for predicting the effectiveness of geological and technical measures, which allows one to combine the 
main methods at different stages of evaluating the effectiveness and to predict the increase in fluid and 
oil production rates, additional production, changes in the dynamics of reservoir pressure and the rate of 
watering of well production.
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Analysis of the effectiveness of the main 
workover actions in carbonate reservoirs of 
the Perm Territory fields

The Perm Territory is an old oil-producing region, 
as a result of which oil fields are characterized by high 
depletion of reserves, involvement in the development of 
heterogeneous reservoirs with low fluid storage capacity 
properties, as well as deposits with high-viscosity 
oils. Development of fields in difficult geological and 
technological conditions of operation of carbonate 
reservoirs, as a rule, is carried out with low annual 

rates of reserves recovery (no more than 2.5%) and 
with low oil recovery factor (ORF) (no more than 35%) 
(Voevodkin et al., 2014).

At the fields of the Perm Territory, starting from the 
70s, the methods of production intensification (PI) and 
enhanced oil recovery (EOR) are being increasingly 
introduced every year. Even with a high economic 
effect of a certain technology, it is necessary to use and 
implement all types of PI and EOR methods in order to 
maintain facilities at the required level for oil production. 
Moreover, each technology demonstrates success in 
certain geological, physical and technological conditions 
(Putilov et al., 2020).

The most successful methods of oil production 
intensification and enhanced oil recovery for carbonate 
objects of the Perm Territory fields are recognized 
as acid hydraulic fracturing (acid fracturing), acid 
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Fig. 1. Comparison of workover measures in terms of 
efficiency. Acid fracturing – acid hydraulic fracturing, AT – 
acid treatment, RP – reperforation, RD – radial drilling, DP 
– drilling perforation, RPC – reperforation and completion.
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Fig. 2. Comparison of workover measures in terms of effect 
duration
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treatment (AT), radial drilling (RD), drilling perforation 
(DP), reperforation (RP) and additional reperforation 
& completion (RPC) (Ilyushin et al., 2015; Kochnev 
et al., 2018).

Figure 1 shows a comparison of the efficiency of 
technologies for the analyzed period (2006–2019) 
for vertical wells in terms of the average additional 
production per well and the average daily production 
increase.

Figure 2 shows a comparison of the average duration 
of the effect from workover actions. The effective period 
is the time of the well operating with an increase in the 
oil production rate caused by workover actions, until the 
oil production rate decreases to the base value.

Analysis of Figures 1–2 shows that the highest 
additional production and average daily increment are 
characteristic of acid fracturing, but this technology 
has significant disadvantages: high cost; the risk of 
fracture breakthrough into a water-cut reservoir; the 
use of a large volume of chemical reagents leads 
to complex work on the disposal of contaminants. 
In addition, when hydraulic fracturing (hydraulic 
fracturing), the technical requirements for candidate 
wells are high, which seriously limits the use of this 
technology, especially on the old well stock. The rest 
of the considered technologies are less demanding for 
the selection of candidate wells and less costly. Radial 
drilling technology based on the average increment 
in additional oil production (additional oil production 
through the well until the oil production rate drops to 
the base value) from geological and technical measures 
defers only to acid fracturing, and in terms of time of 
economic effect is the best one.

Radial drilling technology is one of the main for 
the Chernushinskaya (25%), Osinskaya (24%) and 
Nozhovskaya (34%) groups of fields in the Perm 
Territory. The analysis of the effectiveness of geological 
and technical measures for various carbonate objects 
of the Perm Territory fields is described in the works 
(Ilyushin et al., 2015; Kochnev et al., 2018). Evaluation 
of the effectiveness of radial drilling technology was 
carried out in (Galkin et al., 2019).

Basic methods for forecasting the 
effectiveness of workover measures

Today, one of the main methods for predicting the 
effectiveness of workover measures is the mathematical 
modeling on a hydrodynamic model (Kravchenko et al., 
2018; Sayfutdinov et al., 2018; Repina et al., 2018). The 
advantages of this method include the possibility of a 
comprehensive assessment of geological and technical 
measures in conditions of the mutual influence of all 
wells on the oil production process, as well as taking into 
account the geological characteristics of the reservoir. 
Simulation can be performed in a variety of simulators. 

The main software systems for Russian oil and gas 
companies are Tempest, Eclipse, T-Navigator.

In geological and hydrodynamic modeling, it is 
important to take into account the subjectivity of the 
adaptation of the model and the way of the workover 
actions modeling, which significantly affects the 
predictive characteristics of the model (Olenchikov, 
Kruglikova, 2008; Kolbikov et al., 2018; Lyu et al., 
2014). The large time and cost of hydrodynamic 
modeling determines the need for its use mainly for 
the design of high-cost workover measures (drilling 
horizontal wells and sidetracks) (Andronov, 2019).

The methodological recommendations (Polukeev et 
al., 2018) describe a method for predicting the increase 
in flow rate from geological and technical measures 
through the specific productivity factor, which is based 
on a comparison of analogs and fluid flow rate forecast. 
The calculation of the production rate increase using 
this method is simple and prompt in the presence of a 
developed base of measures, but its accuracy is often 
not great. The calculation does not take into account the 
complex of geological and technological parameters, but 
only the specific productivity factor and its components 
are considered. The approach is currently the main one 
for the LUKOIL group of companies. Detailed “manual” 
analysis of wells based on geological field analysis using 
analytical and statistical methods takes a lot of time and 
is subjective.
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The development of digital technologies provides 
significant potential for the application of machine 
learning technologies in the oil and gas industry 
(Koroteev et al., 2014). These are various methods 
such as neural networks, decision trees, random forest 
algorithm, cluster analysis. Among the advantages of 
machine learning methods for specialists designing 
geological and technical measures, one can note the 
possibility of promptly obtaining satisfactory forecasts 
and the absence of requirements for hydrodynamic 
modeling skills. In general, the main advantages of 
using machine learning technologies are: accuracy, 
automation, speed, customization, scalability (Andronov, 
2019).

The main disadvantages are: lack of clear forecasting 
algorithms, lack of physical justification, low 
interpretability of the results obtained (Pichugin et al., 
2013; Azbuhanov et al., 2019).

Also, various methods of mathematical statistics 
are used to predict the effectiveness of geological and 
technical measures. The work (Galkin et al., 2019) notes 
the successful application of the methods, however, 
there are drawbacks: the need for manual search and 
analysis of “outliers”, the use of a set of various statistical 
methods for data preparation.

Development of a comprehensive 
methodology for predicting the effectiveness of 
workover measures

To improve the reliability of forecasting, an approach 
is proposed for combining methods at different stages of 
forecasting, which consists of four main stages.

1. Creation of a database on geological and technical 
measures and the corresponding geological and physical 
parameters.

For a comprehensive forecast of the effectiveness 
of geological and technical measures, it is necessary to 
take into account the influence of both geological and 
technological parameters. Therefore, at this stage, it is 
necessary to create a consolidated database, including 
wells on which geological and technical measures 
were carried out, as well as the results of geophysical, 
hydrodynamic and other studies on these wells.

2. Identification of the parameters that have the 
greatest impact on the potential for additional production 
for each workover measures by using the methods of 
mathematical analysis.

To ensure a high-quality forecast, it is necessary to 
understand what parameters determine the effectiveness 
of the technology in various geological and physical 
conditions. To identify these parameters, it is proposed 
to use one-factor and multivariate mathematical analysis.

3. Construction of regression models based on the 
identified parameters to predict the increase in liquid/oil 
production using machine learning methods.

At this stage, machine learning models are built to 
predict the increase in liquid/oil production rate.

4. Forecasting the potential of additional production 
by entering the results of machine learning into the 
hydrodynamic model.

To obtain a long-term forecast, it is necessary to take 
into account the mutual influence of wells, therefore, 
it is proposed to integrate mathematical models with a 
geological and hydrodynamic model (HDM).

In this work, the methodology has been tested using 
the example of radial drilling technology.

Identification of parameters affecting the 
efficiency of radial drilling technology

At the first stage, a consolidated database was created 
for all wells with measures taken for radial drilling for 
the period from 2006 to 2019 in the Perm Territory and 
the corresponding parameters. The database includes the 
geological and physical characteristics of the reservoir 
adopted at the fields when calculating reserves; the 
results of hydrodynamic studies of wells before carrying 
out measures for RD; the well log interpretation results, 
oil and liquid production rates before RD, data on 
perforation intervals, data on previous well interventions. 
As a result, to assess the effectiveness of radial drilling 
measures, the analysis took into account data on 590 
wells in 40 oil fields and with 36 parameters.

At the second stage, the impact of the geological and 
physical parameters of the object on the performance 
indicators of geological and technical measures was 
assessed. The following parameters were chosen as 
efficiency indicators: average daily increase in oil 
production rate (t/day), additional production (thousand 
tons), maximum flow rate after geological and technical 
measures (t/day), duration of the effect (days).

Initially, a univariate analysis was performed. The 
assessment of the influence of parameters on performance 
indicators was carried out using the Student’s t-test. The 
essence of the method is to test the hypothesis that the 
mean values are equal (1):

 	

(1)

where X1, X2 – respectively, the average values ​​of the 
sample indicators; S12, S22 – variances of sample indicators.

The difference in mean values ​​is considered 
statistically significant if tp> tt, where tp is the calculated 
value of the criterion, and tt is the tabular value of the 
t criterion. The tt values ​​are determined depending on 
the amount of compared data and the significance level 
(p = 0.05), if the significance level is less than 5%, 
then the samples are different with a probability of 
more than 95%. The results of calculating the Student’s 
test are presented in Table 1. Values ​​with an attainable 
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Tab. 1. Influence of geological and physical parameters on the efficiency of RD for wells of the Tournaisian facilities of the Perm 
Territory fields

Additional oil production, t  < 2000 > 2000 t-test  p N1 N2 
Porosity Kp, %  12,4 12,8 -1,64 0,10 96 93 
Oil viscosity µ, mPa*s  24,9 32,0 -1,76 0,08 96 93 
Oil density ƍo, g/cm 3  0,87 0,89 -2,06 0,04 96 93 
Bottom hole pressure Рbot, MPa 5,22 6,29 -2,57 0,01 56 75 
Saturation pressure Рsat , МPа  10,32 10,21 0,33 0,74 56 75 
Skin factor S, un.  -3,52 -2,03 -2,82 0,01 56 75 
Oil-saturated thickness hsat ,  m  8,47 9,32 -1,85 0,07 96 92 
Average daily increase, t/day  < 3 >3 t-test-  p N1 N2 
Porosity  Кp, %  12,32 12,94 -2,59 0,01 102 87 
Oil viscosity  µ, mPа*s  25,38 32,04 -1,65 0,10 102 87 
Oil density  ƍo, г/см 3  0,87 0,89 -1,90 0,06 102 87 
Specific interlayer thickness hint, m  2,09 1,66 2,08 0,04 97 76 
Reservoir pressure Рres , МPа  11,95 13,29 -2,65 0,01 71 60 
Bottom hole pressure Рbot, МPа 5,28 6,49 -2,95 0,00 71 60 
S, un. -3,16 -2,09 -2,01 0,05 71 60 
Effect duration from RD, day  < 900 >900 t-test  p N1 N2 
Oil flow rate before workover qo , t/day 3,47 2,89 2,01 0,05 98 91 
Skin factor S, un.  -3,66 -1,83 -3,52 0,00 60 71 
Max oil flow rate after RD, t/day  < 10 > 10 t-test  p N1 N2 
Oil flow rate before workover qo, t/day 2,33 4,00 -6,27 0,00 92 97 
Water cut W,%  21,50 16,86 2,24 0,03 87 96 
Ad. oil flow rate in 1 year after RD, t/day  < 5 > 5 t-test  p N1 N2 
Total reservoir thickness Ht , m 21,26 24,53 -1,99 0,05 93 96 
Porosity Кp, %  12,39 12,81 -1,71 0,09 93 96 
Oil density ƍo, g/сm3  0,87 0,89 -2,71 0,01 93 96 
Volumetric ratio  b, un. fr.  1,09 1,06 2,65 0,01 93 96 
Gas content G, m3/m3  41,81 31,55 2,31 0,02 93 96 
Skin factor S, un.  -3,50 -2,05 -2,73 0,01 56 75 
Total thickness Htotal , m  22,23 25,27 -1,85 0,07 93 95 

significance level p below 0.05 are highlighted in bold 
type for indicators, at which, with a probability of 
more than 95%, one can argue about differences in the 
considered samples. In this case, the studied parameter 
has a statistically significant (non-random) effect on the 
differences in indicators in the samples. Values ​​with p 
in the range from 0.05 to 0.10 are italicized, for which 
the influence also exists, but somewhat lower.

Greater additional production and average daily 
growth after RD are characterized by deposits with higher 
oil viscosity and density, which are more characterized by 
the formation of stagnant zones in low-permeability zones 
of the reservoir. It is also more preferable to use RB under 
conditions of significant energy potential of the reservoir 
(Pres, Pbh) and with a higher porosity of the reservoir. The 
conditions of large specific interlayer thicknesses, total 
and oil-saturated thicknesses also generally positively 
affect the efficiency of the RD. The increase in oil 
production in the first year after RD is influenced by the 

effective thickness, reservoir storage capacity, oil density, 
volumetric ratio and gas saturation.

For a comprehensive assessment of the impact of 
indicators (multivariate analysis), linear discriminant 
analysis was used. The most important indicator of 
efficiency is the increase in the flow rate of oil and liquid 
after workover measures. In this case, a set of parameters 
was identified that affects the increase in oil (2) and 
liquid (3) flow rates after RD. As a result of calculations, 
the following linear discriminant functions (Z) were 
obtained, which maximally separate the samples by the 
average value of the increase in production.

To increase the oil production rate (at R = 0.60):
Z = –0.218∙qo + 10.314∙Ks – 0.061∙Kcalc – 0.00633∙μo+  
0.176∙ςch + 0.00556∙χ – 0.762∙hi + 0.0013∙S – 3.41. (2)
To increase the liquid flow rate (at R = 0.79):

Z = –0.39∙ql + 0.27∙Pres – 0.102∙hoit+ 0.26∙ ϕ +
0.069∙S – 6.48 	 (3)
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Fig. 4. Comparison of actual and forecast values. 
Discriminant analysis.
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Fig. 3. Comparison of actual and predicted values of fluid 
flow rate after workover measures: a) neural networks; b) 
SVM method.

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50
Predicted fluid flow rate after workover measures, m3/day

A
ct

ua
l f

lu
id

 fl
ow

 r
at

e 
af

te
r 

w
or

ko
ve

r 
m

ea
su

re
s, 

m
3 /d

ay

  

 Training  (R=0.81)
Test and control (R=0.75)

а) 

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

 (R=0.79)

 (R=0.78)

b) Predicted fluid flow rate after workover measures, m3/day

A
ct

ua
l f

lu
id

 fl
ow

 r
at

e 
af

te
r 

w
or

ko
ve

r 
m

ea
su

re
s, 

m
3 /d

ay  Training

Test 

where qo – oil production rate before RD, t/day; ql – 
liquid flow rate before RD, m3/day; hi – oil-saturated 
thickness, m; ϕ – porosity,%; Кs – net-to-gross sand 
ratio; Кcalc – coefficient of dissection; μo – oil viscosity in 
reservoir conditions, mPa*s; ƍo – oil density in reservoir 
conditions, g/cm3; χ – piezoconductivity, cm2*s; Pres – 
reservoir pressure, MPa; hoit is the average thickness of a 
single oil-saturated interlayer, m (the average thickness 
of a single oil-saturated interlayer was calculated as the 
ratio of hi to the number of oil-saturated interlayers); S – 
well skin factor; ςch – hi, m/number of radial channels.

As a result of multivariate analysis, it was revealed 
that the increase in oil production rate is affected by the 
following set of parameters: oil production rate prior to RD, 
net sand coefficient, compartmentalization, oil viscosity, 
channel density, piezoconductivity, average thickness of a 
single oil-saturated interlayer and skin factor.

The increase in fluid flow rate is most influenced 
by a set of parameters: fluid flow rate to RD, reservoir 
pressure, oil-saturated thickness, porosity, skin factor.

The identified parameters are used to build computing 
learning models.

Forecast of the increase in fluid flow rate 
after workover measures

At this stage, the forecast of the increase in fluid 
flow rate was made using machine learning methods. 
Artificial neural networks are chosen as the first method. 
Neural networks are a mathematical model built on the 
principle of biological neural networks and allow solving 
problems of regression, clustering and data analysis 
(Voronovsky et al., 1997; Tsaregorodtsev, 2008). As a 
result, networks with different architectures were built, 
which quite reliably allow predicting the increase in fluid 
flow rate (R – from 0.77 to 0.86). For further forecasting, 
a network with a simpler architecture was chosen – a 
multilayer perceptron: 17 neurons on the input layer, 1 
hidden layer with 5 neurons and 1 neuron on the output 
layer, the neuron activation function is logistic, the 
error function is the sum of squares. When training this 
network, sufficiently high correlation coefficients were 
achieved, both on the training sample, and on the test 
and control (Figure 3a).

The second method for calculating the increase in 
oil production after RD is the support vector machine 
(SVM). SVM is a class of supervised learning algorithms 
used for classification and regression analysis problems. 
As a result of the calculations, several classifying 
dividing lines are constructed, of which only one 
corresponds to the optimal dividing (Tsaregorodtsev, 
2008). Figure 3b shows the results of model calculations 
for the training and test samples, respectively.

For comparison, the increase in fluid flow rate was 
calculated using linear discriminant analysis (LDA). 
The method solves the problems of classification, not 

regression, however, in the calculations, a transition 
to a probabilistic assessment is possible, and through 
probability it becomes possible to predict an increase 
in production rate (Figure 4) (Galkin et al., 2019).

The result of training in this case is somewhat worse 
(R = 0.77–0.72), but the advantage of the method is that 
in the process of building a model it is possible to verify 
its physicality. That is, the signs of the linear discriminant 
function and the parameters should not contradict the 
physical meaning. When building a neural network or 
a support vector model, there is no way to track the 
physicality of the coefficients in the model, which is one 
of the main disadvantages of the method.

Forecast of additional oil production from 
workover measures

In the process of predicting the effectiveness of 
geological and technical measures, it is important to 
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assess the potential for additional production. When 
using only statistical models, changes in the physical 
and pressure conditions of the reservoir during the 
forecast period are not taken into account, which does 
not allow for an assessment of production in the long 
term. Statistical models are able to predict only for 
current conditions and for one well, without taking into 
account mutual influence and interference.

The integration of stat ist ical  models and 
hydrodynamic modeling opens up opportunities for 
planning workover measures in the long term, that is, 
taking into account changes in reservoir conditions 
during development. In addition, the integration 
approach allows one to take into account the geological 
structure of the reservoir, namely, the variability of 
properties in the reservoir volume and the rate of 
water breakthrough after the event, depending on the 
hydrodynamic connectivity of the reservoir and the rate 
of the front of oil displacement by water.

In this work, two algorithms have been developed 
to predict liquid flow rate and additional oil production 
after the event: 1) integration of a mathematical model 
obtained using a neural network and hydrodynamic 
modeling; 2) integration of a multidimensional model 
obtained using LDA and hydrodynamic modeling.

The algorithm for calculating additional production 
using neural networks is as follows:

1. Determination of candidate wells and the date of 
the event;

2. Calculation of the increase in fluid flow rate using 
a trained neural network;

3. Entering fluid flow rate values into the hydrodynamic 
simulator, taking into account the increment from 
geological and technical measures for the candidate well;

4. Launching the calculation of the HDM;
5. Assessment of the potential for an increase in oil 

production rate, additional production for the forecast 
period, the nature of the rate of water cut and the 
dynamics of reservoir pressure.

To integrate a multidimensional statistical model 
for calculating the liquid flow rate obtained using 
linear discriminant analysis, a Python script has been 
developed that allows taking into account the obtained 
dependencies in the Roxar Tempest More hydrodynamic 
simulator.

The developed mathematical models of the increase 
in fluid flow rate from workover measures are entered 
into the program code of the script. The variables of the 
mathematical model refer to the vectors of the values ​​
of the simulation model. The script takes into account 
the static indicators (thickness, compartmentalization, 
net-to-gross sand ratio, porosity, permeability, fluid 
properties, etc.) entered in a tabular form in the 
simulator, and the dynamic performance of the well read 
by the script at the time of forecasting (reservoir and 

bottomhole pressure, current flow rate liquid, water cut). 
As a result, this makes it possible to obtain a forecast of 
the increase in the liquid flow rate from the event at any 
time, and then to assess the technological efficiency of 
the event in the long term.

Thus, when using LDA, the algorithm for predicting 
additional production can be summarized as follows:

1. Determination of the candidate well and the date 
of the event;

2. Entering static parameters for the well into the 
hydrodynamic simulator (net oil pay, porosity, skin 
factor, etc.) in tabular form;

3. Launching the calculation of the HDM;
4. Determination of the dynamic parameters of the 

well (current reservoir pressure, current fluid flow rate) 
on the date of the event in automatic mode using a script;

5. Calculation of the increase in fluid flow rate from 
geological and technical measures according to the 
previously obtained LDA dependencies in automatic 
mode using a script.

According to formula (4), a linear discriminant 
function is calculated, which maximally separates 
objects into groups of more and less promising workover 
measures (the boundary value of the increase in fluid 
flow rate is 8 m3/day). In this formula, the script reads the 
parameters of fluid flow rate (ql) and reservoir pressure 
(Pres) from the hydrodynamic model at the time of the 
forecast. The parameters of the oil-saturated thickness 
(hi), porosity coefficient (ϕ) and skin factor (S) are 
entered in a tabular form:

Z = –0.39∙ql + 0.27∙Рres – 0.1∙hi + 0.26∙ ϕ + 
0.07∙S – 6.48. 	 (4)
According to the formula (5), the probability of 

attributing workover measures to a promising class is 
calculated (an increase in fluid flow rate of more than 
8 m3/day):

P(Z) = –0.015∙(Z)3 + 0.021∙(Z)2 + 
0.34∙(Z) + 0.47. 	 (5)
According to the formula (6), the value of the increase 

in fluid flow rate is calculated:
Δql = 12.35 ∙(P(Z)) +3.82. 	 (6)
6. Calculation of further dynamics of technological 

parameters of the well in the hydrodynamic model and 
determination of additional oil production.

As a result, by integrating the LDA model and 
geological and hydrodynamic modeling, it is possible 
to calculate the increase in the flow rate of liquid and 
oil from workover measures in an automatic mode. It 
should also be noted that geological and hydrodynamic 
modeling makes it possible to assess additional oil 
production from geological and technical measures, the 
dynamics of reservoir pressure and water cut rates after 
workover, and well interference (Figures 5–6).
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Fig. 5. Assessment of the effect of workover measures using 
the proposed method
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Fig. 6. Assessment of changes in reservoir pressure after 
workover measures

Fig. 7. Comparison of the forecast accuracy of the standard 
methodology and the developed methodology for predicting 
the increase in fluid flow rate after RB
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Fig. 8. Comparison of the forecast of the standard 
methodology and the developed methodology with the actual 
data of the average daily increase in oil production by years
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Results
The developed methodological approach includes 

a combination of several methods for predicting the 
increase in the flow rate of liquid, oil and additional 
production. The combination of statistical and 
mathematical forecasting methods can significantly 
increase the predictive reliability of the effects from 
geological and technical measures. As part of the study, 
a script has been developed that automatically calculates 
the effects of radial drilling, which significantly reduces 
time costs and enables quick assessment of the measure 
effectiveness.

As a result of the implementation of the methodology, 
using the example of radial drilling technology, it was 
possible to increase the predicted reliability of the 
increase in fluid flow rate, as well as the assessment of 
additional production (Figures 7–8).

Figure 8 shows a comparison of the results of the 
forecast of the average daily increase in oil production 
versus the actual data according to the existing and 
proprietary methodology. Based on the analysis, it can 
be seen that the existing methodology significantly 
underestimates the effect of the workover event relative 
to the actual effect, both in terms of additional oil 
production (32%) and in terms of the effect duration. 
Due to the underestimation of the potential of the 

candidate well, there is a possibility of abandoning the 
event and, as a consequence, a decrease in the final oil 
recovery factor and the efficiency of development in 
general.

The proprietary methodology repeats with greater 
accuracy the actual effect of the workover event, 
although it showed a somewhat overestimated result, 
while the deviation in additional oil production does 
not exceed 5%. The combination of statistical and 
hydrodynamic modeling makes it possible to reduce 
uncertainties and reduce the shortcomings of existing 
techniques by combining methods at different stages 
of forecasting. To refine the machine learning models, 
the parameters used are physically substantiated using 
statistical analysis (Student’s t-test, linear discriminant 
analysis). To reduce the time of recording events in 
the hydrodynamic model and reduce the uncertainties 
associated with the method of modeling various 
workover measures on the hydrodynamic model, a 
developed script is used that allows you to quickly enter 
data into geological and hydrodynamic models, as well 
as calculate the increase in fluid flow rate taking into 
account machine learning models that take physical and 
technological parameters. The script allows calculation 
of the effect in automatic mode, thereby reducing the 
time spent by 2.5 work hour or even more.
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