NEW APPROACH TO RANKING OF JURASSIC SEDIMENTARY COMPLEXES OF THE NORTHERN PART OF THE WEST SIBERIAN PETROLEUM BASIN

I.A. Panarin LUKOIL-Engineering LLC, Moscow, Russia E-mail: niranap@mail.ru

Abstract. Recent events, such as the commencement of commercial development of the Novoportovskoye, Bovanenkovskoye fields in the Yamal Peninsula, the creation of infrastructure, pipeline and railway transport facilities, and the decision to build an liquified natural gas plant for the Tambey group of fields, – all of it builds a case for increasing the exploration of the resource base of the northern territories of West Siberian petroleum basin and the adjacent Kara Sea offshore. Jurassic hydrocarbon exploration leads/prospects have not been sufficiently studied and require additional exploration.

The resource potential of Jurassic and Cretaceous reservoirs of South Kara region are estimated by various authors from 18,5 to 41,2 billion tons of oil equivalent. The systematization of information was executed from different sources and in the presented work was proposed the methodology for ranking the Jurassic sedimentary complexes.

The ranking of selected fundamental characteristics were divided into three groups depending on their priority. This method allowed to determine the most prospective intervals of the Jurassic section for further study.

The priority targets for further exploration in the Jurassic section based on the ranking results are the Middle Jurassic reservoirs of the Lower Bajocian-Upper Bathonian and Upper Aalenian-Lower Bajocian sedimentary complexes and the Upper Jurassic Callovian-Tithonian reservoirs.

Key words: ranking, exploration leads/prospects, Jurassic reservoirs, Western Siberia DOI: https://doi.org/10.18599/grs.19.4.1

For citation: Panarin I.A. New Approach to Ranking of Jurassic Sedimentary Complexes of the Northern Part of the West Siberian Petroleum Basin. *Georesursy* = *Georesources*. 2017. V. 19. No. 4. Part 1. Pp. 302-310. DOI: https://doi.org/10.18599/grs.19.4.1

Despite the high level of production that has been maintained in this region for over 50 years, the West Siberian petroleum basin (PB) has an enormous potential for discovering new fields. The prospects of exploring for large oil and gas fields in West Siberian PB are mainly associated with its northern poorly developed territories of the Yamal and Gydan Peninsulas, and the adjacent Kara Sea offshore with deep sedimentary cover and unconventional structural-lithological hydrocarbon traps.

The low exploration maturity of the Jurassic reservoirs of the Yamal and Gydan petroleum areas (PA) and the adjacent Kara Sea offshore hinders forecasting the conditions for the formation of possible large and unique accumulations of oil and gas. Studies focusing on the architecture of main reservoirs, promising from the point of view of further hydrocarbon (HC) exploration, also remain insufficient. The relevance of research in this area is also supported by the fact that the majority of the fields are a rather complex object of research, and the details of their geological setting are not fully taken into account during exploration planning.

The resource base of the region under study is colossal and, naturally, many oil and gas producing companies strive to increase it through exploration in this region. An example of this is the discovery by Rosneft in 2014 of the Pobeda oil- gas-condensate field on Universitetskaya structure in Kara Sea offshore in Cretaceous and Jurassic deposits. According to preliminary estimates, the inplace volumes of the discovered field are 338 billion cubic meters of gas and more than 100 million tons of oil (www.rosneft.ru).

The gas potential of the entire Yamal region can reach 61-62 trillion m³, and in addition, there are 13.8 trillion m³ of in-place resources in the "marginal" and tight reservoirs (with gas recovery factors of no more than 0.25), including onshore Yamal-22.5 trillion m³/4.5 trillion m³ (in-place/ reserves), offshore – 39.1/9.3 trillion m³ (Skorobogatov, 2013). The resource potential of the Jurassic and Cretaceous complexes of the South Kara PA is estimated at 18.5 to 41.2 billion tons of oil equivalent. The minimum and maximum estimates differ by more than 100%, which confirms the low exploration maturity of the region (Kazanenkov et al., 2014). N.Ya. Kunin estimated the resources of the Jurassic-Cretaceous deposits of the Gydan Peninsula at 40 billion tons of oil equivalent, mainly oil. According to A.R. Kurchikov and others (2012), the initial total hydrocarbon resources (ITR) of the Gydan

PA are more modest and amount to 9772.1 million tons of oil equivalent, including oil -938.1 million tons, gas -8181.1 billion m³, and condensate -652.8 million tons (Kazanenkov et al., 2014).

The share of hydrocarbon resources of the Jurassic complex is much less than that of the Cretaceous one and accounts for 10-20% of the total volume (Kurchikov et al., 2012). Thus, it is believed that the primary targets for exploration and further development of the discovered fields in this region are mainly associated with the Cretaceous productive horizons of Yamal, Gydan and the Kara Sea offshore, taking into account mainly their shallow depths and better reservoir properties vs. Jurassic prospects. This results in significantly lower exploration, development and commissioning costs. However, the emergence of new technologies that significantly accelerate drilling operations (including offshore) and allow cost savings, is expected to offset this difference in the near future. In addition, it is necessary to account for the rather rich Western (mainly US) experience of hydrocarbon production from rocks, which were traditionally considered non-reservoirs (shales, low permeability rocks).

Thus, it is time to evaluate and plan exploration programs taking into account the discovery potential in the Jurassic complex, which is regionally associated mainly with positive structures, such as swells and uplifts (Panarin, 2012).

In this paper, we propose to rank the Jurassic sedimentary complexes (SC) and identify the most promising of them. In total, according to the data of various researchers, six such complexes are identified: the Hettangian-Lower Pliensbachian, the Upper Pliensbachian, and the Toarcian-Lower Aalenian; the Upper Aalenian-Lower Bajocian; the Lower Bathonian-Upper Bathonian and the Callovian-Tithonian (Figure 1).

Ranking methodology

To perform the ranking of the Jurassic sedimentary complexes, some basic characteristics were selected, which were then divided into three groups depending on the degree of priority (first, second and third order characteristics – Table 1). The characteristics of the **first order** include five most significant conditions:

- Presence of a high-quality seal – preservation conditions;

- Generation potential of the SC oil source unit – generation conditions;

- Specific productivity of similar complexes in adjacent areas;

- Distribution of SC reservoir rocks (local or regional);
- Number of identified reservoirs in SC.

gr

Figure 1. Jurassic sedimentary complexes of the Northern part of Western Siberia PB

Field	Туре	Productive zone (reservoir)	Productive horizon	Choke diameter, min/max, mm	Oil rate, min/max, m ³ /d	Gas rate, min/max, k m ³ /d	Condensate rate, min/max, m ³ /d
Bovanenkovo	G-C	Yu ₁₂	Zimny	12	-	76,9	14,57
Novoportovskoye	G-C	Yu11	Sharapov	5/16	-	G+C 25.	.7/175.62
Bovanenkovo	G-C	Yu10	Nadoyakha		-	111,01	41
West Tambei	G-C	Yu6-7	Vymsk	10	-	44,98	no data
Malygin	G-C	Yu6-7	Vymsk	10,5/20,3	-	28.7/544.5	6.8/34.9
Nurmin (non-commercial flow)	0	Yu8	Vymsk	no data	0,1	no data	-
Novoportovskoye	Ο	Yu2-3	Malyshev	no data	288	176	38
Tazov	G-C	Yu2-3	Malyshev	no data	-	519	no data
Kharasavay	G-C	Yu2-3	Malyshev	14/19	-	149/283	no data
Maloyamal	G-C	Yu2-3	Malyshev	5,4	-	14,3	no data
Maloyamal	G-C	Yu4	Malyshev	14,5	-	164,4	no data
Yubilei	Ο	Yu2	Malyshev	9	13,2	13,7	no data
Urngoi (Pestsov area)	G-C	Yu2	Malyshev	5	-	126	65
Geophysics field	G-C	Yu2	Malyshev	15	-	68	no data
Beregovoye	Ο	Yu2-3	Malyshev	5/8	9.6/15	-	-
North Tambei	G-C	Yu2	Malyshev	20	-	77	no data
Lenzit	0	Yu2	Malyshev	no data	0.225-5	-	-
Urengoi (S.Pestsov area)	G-C	Yu3	Malyshev	5	-	35	7
Russko-Rechensk	G-C	Yu1	Vasyugan	8/17	-	168/740	109/180
Mangazei	0	Yu1	Vasyugan	no data	5.4/14.2	-	-
Limbayakha	Ο	Yu1	Vasyugan	4	6.2/26.2	-	-
Yarovoye	O-G-C	Yu1	Vasyugan	8	14.1/64.4	52/170	18.1/19.5
Naumov	G-C	Yu1	Vasyugan	4/8	-	11/116	4/63

Table 1. Productivity of Jurassic targets (Skorobogatov et al., 2003)

Second-order characteristics:

- Total SC in-place volumes in the study region;
- Average reservoir rock porosity;
- Average reservoir rock permeability;
- Average SC net sand;
- Depth of occurence;

- Vertical zone heterogeneity (average NTG).

- Third-order characteristics include:
- Environments of deposition (EODs);

- The predominant composition of the reservoir rock cement;

- Percentage of cement in inter-pore space.

The above characteristics did not include important properties complicating further development of reservoirs, for example, such fluid properties as viscosity, density, content of harmful components (hydrogen sulphide, carbon dioxide) or overpressure. This is due to the fact that oil or condensate of discovered reservoirs in Jurassic SCs have similar features – they are light or very light and have low viscosity, and also contain practically no harmful components. And almost all the reservoirs of the complexes have characteristic overpressure conditions. So in this particular case, these items were excluded from ranking. To determine the priority level of each six SCs, the scoring system was used from 1 to 6. One point corresponds to the lowest priority, the six points to the highest priority.

Thus, all sedimentary complexes received their own score for each of the characteristics (Table 2). But for the final ranking, each score should be multiplied by a factor depending on the priority level of each characteristic – the first order parameters must be multiplied by the maximum coefficient of 3, the second order by the coefficient of 2 and the third order by the coefficient of 1 (Table 3). The sum of all points, with the weighting factor and the ranking results, is presented in Table 4.

First-order characteristics Presence of quality seal

The maximum score (6) is assigned to the Malyshev Horizon, since the quality of the overlying Bazhenov and Abalak seals is probably beyond doubt. The second highest score (5) is Vymsky Horizon, considering the thick predominantly shale unit (up to 200 meters) of the Lower Bajocian-Upper Bathonian SC. Four (4) points were awarded to the Vasyugan Horizon, since the lower part of the Cretaceous complex contain shales of the Akhsky

Nadym PD Russko-Reckenski Vurkhar Vurkhar P Vurkhar P			Mangazei				Ē															
Nadym PD Yarkhar Yamburg Lenzit Lenzit South Yamal PD Lenzit South Yamal PD Madym PD <th< td=""><td></td><td></td><td>Russko-Rechensk</td><td></td><td></td><td></td><td>۲uγ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			Russko-Rechensk				۲uγ															
Notify IPD Yamburg Lenzit Notify IPD Yamburg Urangol PD Lenzit Notify IPD Babay 000 <td></td> <td></td> <td>Yurkhar</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Yu2</td> <td></td>			Yurkhar						Yu2													
Lanzit North Urengol Urengol </td <td>Nadyin PD</td> <td>Yamburg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Υ^{u2}</td> <td></td>	Nadyin PD	Yamburg						Υ ^{u2}														
North Urengoi North Urengoi Orden DA Urengoi PD North Urengoi Orden DA Samburg Orden	PA.		Lenzit						C							_					-	
Uneudoi	lym-Pur		North Urengoi				O E															
Coddan DA Medvachie/ Medvachie/ Malosana Samburg Medvachie/ Malosana Samburg Medvachie/ Malos		Urengoi PD	Urengoi						λ ^{u3} χ ^{u2}													
Medvezhie	Nac		Samburg				€ ²															
Material International Inte			Medvezhie						V ^{m2}								rvoirs					
South Yama PD Maloyama Tambei PD Maloyama		0 11 1/ 1 55	Novoportovo						Yu2-6					Yu11			e rese			ctivity		
Reserver (Cond) Condon PA Amateria Amateria Amateria Amateria INTERNATIONAL SCALE Markania Markania<		South Yamal PD	Maloyamal	LDS					Yu2-3								ductive			rodu		
Manual Intervalue Metricination Condentine Manual Intervalue Manual Interv			South Tambei	ш —					^{γυ4}		Vu7,Yu8						ly proc		SE	r par	5	
Manual Point North Tambei Andre IDA Malygin Malygin Kharasavay 0,0	7	Tambei PD	West Tambei							۶							entia	ĪŌ	Oil-g	Gas		
Malygin PD Malygin Malygin Goldan DA Numin PD Malygin Kharasavay 0	al P/		North Tambei						₩ ¹²								Pot		•	• (9	
Kharasavay Kharasavay Nurmin PD Kharasavay Nurmin PD Netilin Bovanenkovo Napalkov PD Geophysics field Semakov Semakov <td>amé</td> <td>Malygin PD</td> <td>Malygin</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Yu23</td> <td>9%</td> <td>●^{∠n,}</td> <td></td>	amé	Malygin PD	Malygin						Yu23	9 %	● ^{∠n,}											
Nurmin PD Neltinin Bovanenkovo (Petrolenu Messoo Neltinin Bovanenkovo (Petrolenu Messoo Nurmin PD Bovanenkovo (Petrolenu Messoo Nurmin PD Bo			Kharasavay						Vu2.3													
IntERNATIONAL SCALE International scale Boomenencon Begional scale Codan PA International scale Regional scale Regional scale Codan PA International scale Regional scale Regional scale Regional scale International scale Regional scale Regional scale Regional scale Regional scale International scale International scale Regional scale Regional scale Regional scale Regional scale International scale International scale International scale Regional scale Regional scale Regional scale Regional scale International scale International scale International scale Regional scale Regional scale Regional scale Regional scale International scale International scale Regional scale Regional scale Regional scale Regional scale Regional scale Regional scale International scale International scale Regional scale Regional scale Regional scale Regional scale Regional scale International scale International scale Regional scale <thregional scale<="" th=""> Regional scale</thregional>	Nurmin PD	Neitin				O E																
Reservoir (cons) Masses SC - Vu12, Standow SC - VU12, Stan			Bovanenkovo						Vu2.3	چ	O		O lay		Vu12							
IntERNATIONAL SCALE Regional scale O'dan Paison INTERNATIONAL SCALE Regional scale Accessed Paison INTERNATIONAL SCALE Intervention Regional scale Intervention Mainton Intervention Accessed Paison Intervention Mainton Intervention Intervention Intervention Mainton Intervention Intervention Intervention Mainton Intervention Intervention Intervention Mainton Intervention Intervention Intervention Intervention Intervention Intervention Intervention Intervention <td>a)</td> <td>Napalkov PD</td> <td>Geophysics field</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Yu2</td> <td></td>	a)	Napalkov PD	Geophysics field						Yu2													
Messor PD (Petroleum Messor PD (Petroleum Minkhow Messor PD (Petroleum Minkhow Goldina (Petroleum Minkhow Minkhow Internation (Callon) Internation	Area		Semakov				€ Yur													Ð		
Rescondence Rescondence Marking Conduction Minkysteve Support Minkysteve Support Marking Conduction Minkysteve Support Marking Conduction Minkysteve Support Marking Support Minkysteve Support Marking Conduction	A mu	Massau	East Minkhov				۲u ¹										oirs		sate	ensat		
INTERNATIONAL SCALE INTERNATIONAL SCALE Regional scale Minky or Minky or	lan trole	(Petroleum District)	East Messoyakha				O M										reserv		ndens	-cond		
INTERNATIONAL SCALE INTERNATIONAL SCALE Regional scale Provident (13, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	(Pe		Minkhov				© 1n										ictive I	_	as-col	-gas-		
INTERNATIONAL SCALE Fra System Subsystem Alaga System Subsystem Stage System Stage System Alagan (J3m) (http:://dianov.org/alagan (J3m) (http:://dianov.org/alagan (J3m) (http:://dianov.org/alagan (J3m) (http:://dianov.org/alagan (J3m) (http:://dianov.org/alagan (J3m) (http:://dianov.org/alagan (J1m) (J2m) (J2m) (J2m) (J1m) (J1			North Parusov						¥u2								Produ	Ö	Ŭ	Ö		
INTERNATIONAL SCALE Regional sc. INTERNATIONAL SCALE Fra System Subsystem Callon (13m) (0,000 contant (23m) (0,000 contant (23m) (0	Be				Da	nilov		Tyu	umer	ו ו					╎└							
Implementation Region Implementation Region Implementation Region Implementation Stage Subsystem Region Implementation Stage Subsystem Stage Subsystem Implementation Volgian (J3v) Regiona Implementation Stage Subsystem <th colsp<="" td=""><td></td><td>al sc</td><td></td><td>ite</td><td></td><td>(J2</td><td>-3dn)</td><td>~~~</td><td>~~~~~</td><td>[</td><td></td><td>2ld)</td><td>(Bp</td><td></td><td>≽.(ii</td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td>al sc</td> <td></td> <td>ite</td> <td></td> <td>(J2</td> <td>-3dn)</td> <td>~~~</td> <td>~~~~~</td> <td>[</td> <td></td> <td>2ld)</td> <td>(Bp</td> <td></td> <td>≽.(ii</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		al sc		ite		(J2	-3dn)	~~~	~~~~~	[2ld)	(Bp		≽.(ii						
International scale Register Fra System Subsystem Fra System Subsystem Register Subsystem Stage Register Register Register Register Register Subsystem Register Register Register Register Register Register Reservoir Reservoir Reservoir Reservoir Reservoir Sinternation: Vasyugan SC - Vulti, Yuli, Yuli, Yuli, Yuli, Sulis, Sulis, Sulis, Sulis, Sulis, Sc - Vulti, Sinternation: Sinternation: Reservoir Reservoir Reservoir, Sc - Vulti, Sinternation:		giona		Sui	Vor (Bd		٥ ٥		lyshev J2ml)	intiev In)	msk Pvm)	in (J1-J	of (J1c	in (J1Iv	Zimr (J1z							
INTERNATIONAL SCALE Era System Slage Era System Subsystem Slage Image: System Subsystem Slage Slage Image: Size System Subsystem Slage Slage Image: Size System Slage Slage Slage Image: Size System Slage Slage Slage Image: Size Size Size Size Size Size Slage Size Image: Size Size Size Size Size Size Size Image: Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size		Re			Bazhe (K1-J3		Abalak (J2-3a		Ma	(J2	3:	Laid	Janç	Lev								
INTERNATIONAL SCALE Fra System Subsystem Stage Fra System Subsystem Stage (C) Oxfordian (J30) (C) Oxfordian (J20) (C) Bajocian (J21) (C) Bajocian (J21) (C) Ademian (J22) (C) Ademian (J23) (C) Admian (J23) (C) A						3rm)	_		pt)			-		11p)	n- (J1s-g							
INTERNATIONAL SCA INTERNATIONAL SCA INTERNATIONAL SCA International system of the second Internation (Cf) and (Cf) a		LE L		Stage	an (J3v)	gean(J:	an (J3o	an (J2k)	nian(J2	4CI / 40	all (921	an (J2a	an (J1ť	achian(,	lemuria tangian				Yu9;			
INTERNATIONAL Fra System C(f) aldn (f) and (f		SCA			Volgi	nmerid	Oxfordi	Callovia	Batho	Doioo	najor	Aalen	Toarci	liensb	Sir Het		÷	÷	Yu8,			
INTERNATION INTERNATION INTERNATION INTERNATION INTERNATION INTERNATION Internation (Cone) inde: Vasyugan SC - Yu12: Sharapov	AL		ε		Ϋ́		-	_					u.			catior	3, Yuz	Yu7,				
INTERNA INTERNA INTERNA Internation (Come) Vasyugan SC - Yu Nadyshev SC - Yu Nadyshas SC - Yu Sharapov SC - Yu Simny SC - Yu12.	TERNATION			bsyste	Up	per (.	J3)	M	iddle	e (J	2)		Low	/er	(J1)		inde:	2, Yu:	Yu6,	11;		
INTER INTER INTER System Casyugan S(Vasyugan S(Va				Su													one)	- - - - -	Υu5,		1	
Z Jurassic (J) Jurassic (J) Image: Signal display to the second				Ē	ε								r oir (z an SC	ev SC	k SC -		2					
w ∞	<u>Z</u>				Jurassic (J)									eserv	alysh	Ismus	harap harap	Ś				
			e Mesozoic (Mz)									ľ	r >	SΣ	źź	z III k	Ĵ					
				ш							(/			I						

South Kara PA

Tazov PD

Pur-Tazov PA

OE

e

€⁴

۲u2.6

Yu2.3

O

Pobeda

Tazov

Ust-Yamsovey Zapolyrnoye

Naumov

Yarovoye

Limbayakha

Upper Jurassic (Callovian-Tithonian)											
		C1	C2	C1+C2							
OOIP	k tons	12561	44938	57499							
OGIP	M m ³	12988	8794	21782							
OCIP	k tons	3088	1366	4454							
OHCIP	k tons OE	28637	55098	83735							
Middle Jur	assic 1 (Lov	ver Bajocia	n-Upper B	athonian)							
		C1	C2	C1+C2							
OOIP	k tons	326082	212688	538770							
OGIP	$M m^3$	247417	668526	915943							
OCIP	k tons	48559	128587	177146							
OHCIP	k tons OE	622058	1009801	1631859							
Middle Jurassic 2 (Upper Aalenian-Lower Bajocian)											
		C1	C2	C1+C2							
OOIP	k tons	0	0	0							
OGIP	$M m^3$	97409	245033	342442							
OCIP	k tons	18490	32915	51405							
OHCIP	k tons OE	115899	277948	393847							
Lower Jurassic 1 (Toarcian-Lower Aalenian)											
		C1	C2	C1+C2							
OOIP	k tons	0	0	0							
OGIP	$M m^3$	3007	60531	63538							
OCIP	k tons	467	9385	9852							
OHCIP	k tons OE	3474	69916	73390							
Lowe	r Jurassic 2	2 (Upper Pli	iensbachia	n)							
		C1	C2	C1+C2							
OOIP	k tons	0	0	0							
OGIP	M m ³	5959	1152	7111							
OCIP	k tons	362	70	432							
OHCIP	k tons OE	6321	1222	7543							
Lower Jurassic 3 (Toarcian-Lower Aalenian)											
		C1	C2	C1+C2							
OOIP	k tons	0	0	0							
OGIP	M m ³	12637	31758	44395							
OCIP	k tons	1960	5220	7180							
OHCIP	k tons OE	14597	36978	51575							

Table 3. Initial HCIP of Jurassic sedimentary complexes

Suite (up to 100 meters thick), which are widespread, and predicted reservoirs will be mainly confined to lithological (non-structural) traps and will be sealed, including shales of the same SC (Abalak and Bazhenov shales). Three (3) points were awarded to the Zimny Horizon, as its preservation is provided by a thick Levin unit. Two (2) points are assigned to Sharapov Horizon, considering its insignificant average seal thickness (62.5 m).

1 point is given to the Nadoyakh Horizon with the minimum shale thickness (about 30 meters on average).

Oil source rock generation potential

The ranking was perfomed according to the average Corg content, so the targets were ranked in the following order: Nadoyakh (3.13%), Vymsky (1.52%), Malyshev (0.94%), Vasyugan (0.79%), Zimny (0.83%), Sharapov (0.75%).

Specific productivity of similar complexes in adjacent areas

The best indicators of productivity by the analog field are reservoirs of the Callovian-Tithonian SC. However, the productivity of the Lower Bajocian-Upper Bathonian reservoirs based on the production test results has been proven at least 12 zones (Table 1) of the sedimentary complex; in addition, the Yu23 zone at the Novoportovskoye field is already in commercial production. Therefore, the highest score for this characteristic was assigned to the Malyshev reservoirs (6 points). The productivity of Vasyugan reservoirs (score of 5) in the study region is proved at 5 fields, the maximum gas productivity is recorded at the Russnekschenskoye field (up to 34,400 m³ of gas/m). Commercial gas and condensate flows from the Vymsky reservoirs were obtained in the West Tambey and Malygin fields, so they were given a third degree of priority. The maximum productivity for the Lower Jurassic zones is related to the Sharapov reservoir (4,500 m³ of gas / m) of the Novoportovskoye field (3 points), the minimum specific productivity indicator corresponds to the Yu₁₀ (Nadoyakhsky reservoir) of the Bovanenkovskoye field (1 point).

Distribution of SC reservoir rocks

Malyshev, Vymsk, Nadoyakh and Sharapov reservoirs were discovered in all wells of the study region, and taking into account their regional distribution, a maximum score of 6 was assigned to this characteristic. For locally distributed Zimny (SC deposits mainly fill the slopes of positive structures and deep depressions) and Vasyugan reservoirs (shaled out in many wells in the region) was awarded a score of 3.

Number of fields with reservoirs identified in SC

The largest number of fields with discovered hydrocarbon reservoirs in the Malyshev zones (17 fields plus 1 field with oil and gas shows). The Vasyugan sandstones are productive in 5 fields (Table 2) of the study region (plus oil and gas shows during drilling in 8 fields), the Vymsky complex is productive in 4 fields (in addition, gas shows were recorded at the Ust-Yamsoveiskoye field). The productivity of the Zimny reservoir was proven only in one reservoir of the Bovanenkovskoye field (1 point), Sharapov – in the Novoportovskoye and the Pobeda fields, the Nadoyakh in the Bovanenkovskoye and Pobeda fields. The ranking of the Lower Jurassic Sharapov and Nadoyakh reservoirs was made accounting for the number of discovered reservoirs: Sharapov – 3 points (8 reservoirs), Nadoyakh – 2 points (3 reservoirs).

Second-order characteristics Total resources of the SC in the study region

The estimate of the resource base in Jurassic complexes used data from 2014 State Reserves Balance.

gr

_			_						
ics	Cement composition	Content, %	14	3-10	5-15	5-15	5-15	3-10	1-5
and content in reservoir rocks		Dominant composition	13	clay-carbonate, carbonate-clay	Carbonate-clay	Clay, carbonate- clay	Carbonate-clay, clay-carbonate	Carbonate-clay	Clay
Enviroments of de		position	12	Shallow-marine	Continental, shallow-marine	Continental, shallow-marine	Continental, shallow-marine	Continental, shallow-marine	Mostly continental
	Reservoir vertical heterogeneity (NTG)	fraction	11	0,23	0,32	0,45	0,41	0,37	0,59
S	SC depth of occurrence	w	10	2450-3150 *top tvdss	2520-3570 *top tvdss	2550-3700 *top tvdss	2770-3911 *top tvdss	2950-4200 *top tvdss	3000-6900 *top tvdss
aracteristic	Average net sands of sedimentary complex	m	9	21,5	67,0	76,5	61,7	39,0	31,3
cond-order ch:	Average permeability	Ш	8	0.01-1690, average 0.01- 100	0.01-214, average 0.01- 10	0.01-98, average 0.01- 1	0.01-81, average 0.01- 1	0.01-73, average 0.01- 1	0.01-62, average 0.01- 0.1
Sec	Average porosity	%	7	8-28, average 12-18	8-27, average 13-17	8-23, average 11-16	8-24, average 10-15	8-21, average 9-15	8-18, average 8-11
	Total SC HC voulmes in study region	M tons OE	6	84	1632	394	73	8	52
	Number of fields w/reservoirs identified in SC / with oil/gas shows	Number of fields w/reservoirs dentified in SC / rith oil/gas shows		5/8	17/1	4/1	2 (3 reservoirs) / 0	2 (8 reservoirs) / 0	1 (1 reservoir) / 0
	Distribution of sedimentary complex reservoir rocks	Regional / Local	4	Local	Regional	Regional	Regional	Regional	Local
der characteristics	Specific productivity in adjacent areas	gas k m ³ / m or oil m ^{3/} d/m	3	$\begin{array}{c} gas \ 34.4 \ k \ m^3 \ / \ m \\ (Russko-Rechensk) \ oil \\ 3.0 \ m^3 \ / d \ / \ m \ (Yarovoye) \end{array}$	gas 7.7 k m ³ / m (Tazov); oil 4.3 m ³ /d / m (Novoportovo)	gas 7.1 k m ³ / m (Malygin);	gas 1.8 k m ³ / m (Bovanenkovo)	gas 4.5 k m ³ /m (Novoportovo);	gas 2.5 k m ³ + cond 0.5 m ³ /d/m (Bovanenkovo);
First	Oil source generation potential	Corg/DOM content, %	2	1.44 / 0.35-1.21	2.14 / 0.53-1.33	2.17 / 0.64-2.38	2.03 / 0.96-5.2	1.44 / 0.2-1.2	average - 0.83; max - 3.0
	Presence of quality seal	Thickness, m	1	06-2	first tens to 200 m average 80-150, property degradation towards basin periphery	60-150, w/sandstone, siltstone interlayers	first tens to 60, increase of sand to the south	40-85	0-207
	Ne SC			1	2	3	4	5	9
	Name of sedimentary complex (reservoir name)			Callovian-Tithonian Vasyugan)	Lower Bajocian- Upper Bathonian Malyshev)	Upper Aalenian- Lower Bajocian Vymsk)	Foarcian-Lower Aalenian Nadoyakha)	Upper Pliensbachian Sharapov)	Hettangian-Lower Pliensbachian Zimny)

Table 4. Characteristics of sedimentary complexes

The volumes are presented in Table 3. The ranking based on this characteristic was performed in accordance with the total hydrocarbon volumes of the explored and preliminary estimated categories (ABC1 + C2) in tons of oil equivalent. The summation of HC resources was based on the following assumption 1 ton of OE here corresponds to 1000 m³ of gas.

Average porosity of reservoirs

Average values of porosity from G.G. Shemin study for the reservoirs of sedimentary complexes are: Vasyugan (15%), Malyshev (15%, but with a lower cutoff value), Vymsk (13.5%), Nadoyakh (12.5%), Sharapov (12%), Zimny (9.5%). Targets are ranked in the appropriate order (the "youngest" complexes have the best reservoir properties and vice versa).

Average permeability of reservoirs

A similar trend is observed for permeability. Permeability of reservoir rocks decreases with the subsidence depth. The average permeability cutoff values: Vasyugan (0.01-100 mD), Malyshev (0.01-10 mD). The average ranges for permeability variation of the SC four lower reservoirs coincide, however, the maximum recorded values of the Vymsk, Nadoyakh, Sharapov and Zimny ones decrease with depth and are 98 mD, 81 mD, 73 mD, 62 mD, respectively.

Average net sands

The average thickness of the reservoirs in the Jurassic sedimentary complexes was determined from a sample of wells in the Yamal fields – Kharasavey, Bovanenkovo, Neytin, Arctic, Sredniamalsk, Nurmin, Novoportovo. The results of the SC net sand averaging in Yamal wells: Vasyugan (21.5 m), Malyshev (67 m), Vymsk (76.5 m), Nadoyakh (61.7 m), Sharapov (39 m), Zimny (31.3 m).

SC depth of occurrence

For the further exploratory well planning and determination of capital costs for drilling, it is extremely important to rank the prospective complexes by the depths of occurrence. With increasing depths of productive deposits, with all other things being equal, the likelihood of field development and subsequent commercial hydrocarbon production from deepseated reservoirs can be significantly reduced. In this case, the oldest Jurassic sedimentary complexes have correspondingly higher depths of occurrence.

Zone vertical heterogeneity

An important indicator of the vertical heterogeneity of the formation in terrigenous rocks is the net-to-gross ratio (NTG). For the ranked sedimentary complexes, this factor was determined for the wells of Kharasavei, Bovanenkovo, Neytin, Arctic, Sredniamalsk, Nurmin, Novoportovo fields. The final order of the Jurassic complexes according to this characteristic in the order of decreasing NTG is represented as follows: Zimny (0.59), Vymsk (0.45), Nadoyakh (0.41), Sharapov (0.37), Malyshev (0.32) and Vasyugan (0.23).

Third-order characteristics

The ranking of this group of characteristics was based on the studies of G.G. Shemin, A.Yu. Nekhaev, A.L. Beisel published in 2011 (Shemin et al., 2011).

EODs

The prioritizing of this characteristic assumed that rocks of shallow-marine genesis have the best reservoir properties, usually with better sorted sand material, and prediction of the presence and distribution of sand bodies of shallow-marine origin is somewhat simpler than predicting, for example, the position of river channels. The complexes under study are characterized by three depositional environments – shallow-marine, mixed (shallow-marine and continental) and exclusively continental. Thus, the Jurassic complexes formed in shallow-water environments were assigned a maximum score of 6, mixed conditions -4 and continental -2 points.

Dominating composition of sedimentary rock cement

The greatest negative impact on the further development of reservoirs is the content of clay cement in the inter-pore space. This is especially evident if the composition of the clay admixture is not uniform, the various forms of clay minerals create serious obstacles to the fluid movement. In addition, clay minerals can react differently to injection of water into the reservoir in order to maintain reservoir pressure (RPM). For example, mixed-layer minerals (montmorillonite) can increase in volume several times, plugging the vug-pore space, and chlorite is less susceptible to this, or not at all. For the carbonate cement the development solution is standard – hydrochloric acid treatment of the reservoir (RAT). Thus, the ranking by this characteristic relied on the clay component content in reservoir rocks. The result of the Jurassic target ranking is as follows: 6 points – Vasyugan (cement is mainly clay-carbonate, less often carbonate-clay), 5 points - Nadiyakh (carbonate-clay, in some cases clay-carbonate), 4 points - Sharapov (carbonate-clay, but with a lower percentage of cement content), 3 points are Malyshev (carbonate-clay), 2 points are Vymsk (mostly clay, less often carbonateclay), 1 point is Zimny (exclusively clay cement).

Cement content in reservoir rocks

By the cement percentage in the six Jurassic complexes, 3 intervals of values are allocated. The maximum priority corresponds to the minimum cement content and vice versa. Six (6) points were assigned to the Zimny target (1-5%), 4 points to Vasyugan and

НАУЧНО-ТЕХНИЧЕСКИЙ ЖУРНАЛ
ГЕОРЕСУРСЫ

309

Table 6. Total score using characteristics of 1st, 2nd, 3d order

C name N <u>°</u>	allovian- ithonian 1 /asyugan)	ower Bajocian- pper Bathonian 2 Malyshev)	pper Aalenian- ower Bajocian 3 Vymsk)	oarcian-Lower alenian A	lpper liensbachian 5 Sharapov)	tettangian- ower liensbachian Zimny)	able 5. Ranking o,	C name 🛛 🕅	'allovian- ithonian 1 Vasyugan)	ower Bajocian- pper Bathonian 2 Malyshev)	pper Aalenian- ower Bajocian 3 Vymsk)	oarcian-Lower alenian 4
1	4	ت	w	1	2	Ø	f sedimentary com	1	12	13	15	ø
2	3	4	w	6	-	5	sexed	2	6	12	15	18
3	S	ې	4	1	ø	2		3	15	18	12	θ
4	3	¢	9	6	9	e		4	6	18	18	18
S	N	Q	4	2	æ	-		5	15	18	12	6
9	4	¢	Ś	3	1	7		9	8	12	10	9
7	6	w	4	3	3	_		7	12	10	~	9
8	6	w	4	3	3	_		8	12	10	×	9
6	-	w	9	4	3	2		6	2	10	12	~
10	6	w	4	3	3	-		10	12	10	×	ę
Π	-	7	N.	4	3	9		11	2	4	10	~
12	6	4	4	4	4	7		12	6	4	4	4
13	6	3	7	S	4	-		13	6	3	7	S
14	4	2	7	2	4	ę		14	4	7	7	2

e

Upper Pliensbachian (Sharapov)

-

Ч

e

Hettangian-Lower Pliensbachian (Zimny)

gr

SC name	N₂	Total score	Rank
Callovian-Tithonian (Vasyugan)	1	124	3
Lower Bajocian-Upper Bathonian (Malyshev)	2	149	1
Upper Aalenian-Lower Bajocian (Vymsk)	3	136	2
Toarcian-Lower Aalenian (Nadoyakha)	4	99	4
Upper Pliensbachian (Sharapov)	5	83	5
Hettangian-Lower Pliensbachian (Zimny)	6	68	6

Table 7. Results of Jurassic sedimentary complexes ranking

Sharapov (3-10%), 2 points to Malyshev, Vymsk and Nadoyakh. All Jurassic sedimentary complexes were ranked for each of the 14 characteristics (Table 4). For the final ranking, each obtained score must be multiplied by a factor depending on the degree of priority of each characteristic – the first order must be multiplied by the maximum factor of 3, the second order by the factor of 2 and the third order by factor of 1 (Table 5). The sum of all the scores with the weighting factor is presented in Table 6, the ranking result is in Table 7.

Conclusions

Thus, the primary targets of further exploration in the Jurassic section based on the ranking are the Middle Jurassic reservoirs of the Lower Bajocian-Upper Bathonian and Upper Aalenian-Lower Bajocian sedimentary complexes, and the third priority exploration targets are the Upper Jurassic Callovian-Tithonian reservoirs. The most promising Lower Jurassic SC is certainly the Toarcian-Lower Aalenian, primarily due to the enormous generation potential of the Toarcian shales, and it is still premature to speak about the potential of underlying complexes.

References

Kazanenkov V.A., Ershov S.V. Ryzhkova S.V., Borisov E.V., Ponomareva E.V., Popova N.I., Shaporina M.N. Geologicheskoe stroenie i neftegazonosnosť regional'nykh rezervuarov yury i mela v Karsko-Yamal'skom regione i prognoz raspredeleniya v nikh uglevodorodov [Geological structure and oil and gas potential of the Jurassic and Cretaceous regional reservoirs in the Kara-Yamal region and forecast of hydrocarbon distribution]. *Geologiya nefti i gaza* = *Geology of oil and gas.* 2014. No.1. Pp. 27-49. (In Russ.)

Kurchikov A.R., Borodkin V.N., Nedosedkin A.S., Zaripov S.M. Geologicheskoe stroenie i perspektivy neftegazonosnosti Gydanskogo poluostrova severa Zapadnoi Sibiri [Geological structure and prospects of oil and gas content of the Gydan peninsula of the north of Western Siberia]. *Nauka i TEK* [Science and Fuel and Energy]. 2012. No. 3. Pp. 10-15. (In Russ.)

Panarin I.A. Prognoz vyyavleniya rezervuarov uglevodorodov v yurskikh sedimentatsionnykh kompleksakh severa Zapadnoi Sibiri i akvatorii Karskogo moray [Forecast of the discovery of hydrocarbon reservoirs in the Jurassic sedimentary complexes of the north of Western Siberia and the Kara Sea]. *Georesursy* = *Georesources*. 2012. No. 6(48). Pp. 56-60. (In Russ.)

Skorobogatov V.A. Novye dostizheniya v oblasti razvitiya Mineral'nosyr'evoi bazy gazoneftedobychi Rossii [New achievements in the field of development of the Mineral and Raw Materials Base of Russia's Gas and Oil Production]. *Territoriya Neftegaz = Oil and Gas Territory*. 2013. No. 3. Pp. 63-66. (In Russ.)

Skorobogatov V.A., Stroganov L.V., Kopeev V.D. Geologicheskoe stroenie i gazoneftenosnosť Yamala [The geological structure and gas and oil-gas content of Yamal]. Moscow: OOO «Nedra-Biznestsentr». 2003. 352 p. (In Russ.)

Shemin G.G., Nekhaev A.Yu., Beizel' A.L., Pervukhina N.V. Fil'tratsionno-emkostnye svoistva rezervuarov yury severa Zapadno-Sibirskoi NGP i zakonomernosti ikh izmeneniya v zavisimosti ot glubiny zaleganiya [Filtration-capacitive properties of reservoirs of the Jurassic of the north of the West Siberian NGP and the patterns of their changes depending on the depth of occurrence]. *Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdenii = Geology, geophysics and development of oil and gas fields.* 2011. No. 10. Pp. 20-26. (In Russ.)

https://www.rosneft.ru/press/releases/item/153712/. «Rosneft'» otkryla novoe mestorozhdenie v Karskom more [Rosneft opened a new field in the Kara Sea]. September 27, 2014. (In Russ.)

About the Author

Ivan A. Panarin – Head of Geological Exploration Department

LUKOIL-Engineering LLC

3 Pokrovsky boul., build. 1, Moscow, 109028, Russia

Manuscript received 25 January 2017; Accepted 25 August 2017; Published 30 November 2017